Abstract
We present an implicit surface reconstruction algorithm for point clouds. We view the implicit surface reconstruction as a three dimensional binary image segmentation problem that segments the entire space \(\mathbb R ^3\) or the computational domain into an interior region and an exterior region while the boundary between these two regions fits the data points properly. The key points with using an image segmentation formulation are: (1) an edge indicator function that gives a sharp indicator of the surface location, and (2) an initial image function that provides a good initial guess of the interior and exterior regions. In this work we propose novel ways to build both functions directly from the point cloud data. We then adopt recent convexified image segmentation models and fast computational algorithms to achieve efficient and robust implicit surface reconstruction for point clouds. We test our methods on various data sets that are noisy, non-uniform, and with holes or with open boundaries. Moreover, comparisons are also made to current state of the art point cloud surface reconstruction techniques.
Similar content being viewed by others
References
Adamson, A., Alexa, M.: Anisotropic point set surfaces. Comput. Graph. Forum 25, 717–724 (2006). doi:10.1111/j.1467-8659.2006.00994.x
Alexa, M., Adamson, A.: Interpolatotory point set surfaces—convexity and hermite data. ACM Trans. Graph. 28 (2009). doi:10.1145/1516522.1516531
Alexa, M., Adamson, A.: On normals and projection operators for surfaces defined by point sets. In: Eurographics Symposium on Point-Based Graphics, pp. 149–155, 2009. doi:10.1.1.116.873
Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of 5th Eurographics Symposium on Geometry Process (SGP ’05), pp. 39–48, July (2007). doi:10.1145/1281991.1281997
Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 32, 387–438 (1993). doi:10.1137/0331020
Amenta, N., Yong, J.K.: Defining point-set surfaces. ACM Trans. Graph. 23 (2004). doi:10.1145/1015706.1015713
Amenta, N, Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of 25th Annual Conference Computer Graphics and Interactive Techniques (SIGGRAPH ’98), pp. 415–421, (1998). doi:10.1145/280814.280947
Amenta, N., Bern, M., Eppstein, D.: The crust and the beta-skeleton: combinatorial curve reconstruction. Graph. Models Image Process. 60, 125–135 (1998). doi:10.1006/gmip.1998.0465
Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006). doi:10.1007/s11263-006-4331-z
Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92, 112–119 (2011)
Bak, S., McLaughlin, J., Renzi, D.: Some improvements for the fast sweeping method. SIAM J. Sci. Comput 32, 2853–2874 (2010). doi:10.1137/090749645
Boissonnat, J.D.: Geometric structures for three dimensional shape reconstruction. ACM Trans. Graph. 3, 266–286 (1984). doi:10.1145/357346.357349
Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision (ICCV ’03), vol. 1, pp. 26–33, October (2003). doi:10.1109/ICCV.2003.1238310
Bresson, X., Chan, T.: Active contours based on Chambolle’s mean curvature motion. In: IEEE International Conference on Image Processing (ICIP ’07), vol. I, pp. 33–36, (2007). doi:10.1109/ICIP.2007.4378884
Bresson, X., Esedoglu, S., Vanderheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007). doi:10.1007/s10851-007-0002-0
Burger, M., Osher, S., Xu, J., Gilboa, G.: Nonlinear inverse scale space methods for image restoration. Commun. Math. Sci. 3752, 25–36 (2005). doi:10.1007/11567646_3
Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. IEEE Trans. Med. Imag. 16, 96–107 (1997). doi:10.1109/42.552059
Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 67–76, (2001). doi:10.1145/383259.383266
Carter, J.: Dual methods for total variation-based image restoration. Ph.D. disserattion, Department of Mathematics, UCLA (2001)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of 5th International Conference on Computer Vision (ICCV ’97), pp. 694–699, (1997). doi:10.1109/ICCV.1995.466871
Castillo, E., Liang, J., Zhao, H.K.: Point cloud segmentation via constrained nonlinear least squares surface normal estimates, Chapter 13. In: Breuss, M., Bruckstein, A., Maragos, P. (eds.) Innovations for Shape Analysis: Models and Algorithms, Springer-Verlag, New York (2013)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004). doi:10.1023/B:JMIV.0000011321.19549.88
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 20(1), 120–145 (2011). doi:10.1007/s10851-010-0251-1
Chambolle, A., De Vore, R.A., Lee, N.T., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998). doi:10.1109/83.661182
Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005). doi: 10.1137/040604297
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001). doi:10.1109/83.902291
Chan, T.F., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999). doi:10.1137/S1064827596299767
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006). doi:10.1137/040615286
Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967). doi:10.1147/rd.112.0215
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), pp. 303–312, (1996). doi:10.1145/237170.237269
Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw data point sets. Comput. Graph. Forum 30, 1630–1642 (2011). doi:10.1111/j.1467-8659.2011.01848.x
Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995). doi:10.2307/2291512
Duguet, F., Durand, F., Drettakis, G.: Robust higher-order filtering of points. Tech. Rep. INRIA, April (2004), doi:10.1.1.59.152
Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Proceedings of 3rd Latin American Symposium on Theoretical Information (LATIN ’98), vol. 1380, pp. 119–132, 1998. doi:10.1007/BFb0054315
Edelsbrunner, H., Mucke, E.P.: Three dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994). doi:10.1145/174462.156635
Federer, H.: Geometric Measure Theory. Springer, New York (1969)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 2003, vol. 22, pp. 950–953, July (2003). doi:10.1145/882262.882368
Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. In: ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 2005, vol. 24, July (2005). doi:10.1145/1186822.1073227
Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Boston (1984)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009). doi:10.1137/080725891
Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. In: CAM, LA, CA, Rep. 09-06, (2009)
Guennebaud, G., Gross, M.: Algebraic point set surfaces. ACM Trans. Graph. 26 (2007). doi:10.1145/1276377.1276406
Hoppe, H., Derose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of 19th Annual Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH. Computer Graphics, vol. 26, pp. 71–78, July (1992). doi:10.1145/142920.134011
Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. In: Proceedings of 4th Eurographics Symposium on Geometry Processing (SGP ’06), June (2006). doi:10.1145/1281957.1281963
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1988). doi:10.1007/BF00133570
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of 4th Eurographics Symposium on Geometry Processing (SGP ’06), pp. 61–70, (2006)
Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Proceedings of 2004 Eurographics/ACM SIGGRAPG Symposium on Geometry Processing (SGP ’04), pp. 11–21, (2004). doi:10.1145/1057432.1057434
Lempitsky, V., Boykov, V.: Global optimization for shape fitting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’07), pp. 1–8, June (2007). doi:10.1109/CVPR.2007.383293
Luo, S., Guibas, L.J., Zhao, H.K.: Euclidean skeletons using closest points. Inverse Probl Imaging 5, 95–113 (2011). doi:10.3934/ipi.2011.5.95
Mederos, B., Velho, L., de Figueiredo, L.H.: Point cloud denoising. In: Proceeding of SIAM Conference on Geometric Design and Computing, (2003)
Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, New York (2000)
Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings of International Conference on Shape Modeling & Application (SMI ’01), (2001)
Mullen, P., de Goes, F., Desbrun, M., Cohen-Steiner, D., Alliez, P.: Signing the unsigned: robust surface reconstruction from raw pointsets. Comput. Graph. Forum 29(5), 1733–1741 (2010). doi:10.1111/j.1467-8659.2010.01782.x
Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989). doi:10.1002/cpa.3160420503
Ohtake, Y., Belyaev, A., Seidel, H.P.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis function. In: Shape Modeling International, pp. 153–161, May (2003), doi:10.1109/SMI.2003.1199611
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. SIAM Multiscale Model. Simul. 4, 460–489 (2005). doi:10.1137/040605412
Oztireli, C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009). doi:10.1111/j.1467-8659.2009.01388.x
Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of Conference on Visualization (VIS ’02), (2002)
Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22(3), 641–650 (2003)
Pauly, M., Mitra, N.J., Guibas, L.: Uncertainty and variability in point cloud surface data. In: Symposium on Point-Based Graphics, pp. 77–84, (2004)
Peng, D., Marriman, B., Osher, S., Zhao, H.K., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999). doi:10.1006/jcph.1999.6345
Piegl, L., Tiller, M.: The NURBS Book, 2nd edn. Springer, New York (1997)
Rogers, D.F.: An Introduction to NURBS: With Historical Perspective, 1st edn. Morgan Kaufmann, San Francisco (2001)
Rogers, D.F.: An Introduction to NURBS. Morgan Kaufmann, San Francisco (2003)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992). doi:10.1016/0167-2789(92)90242-F
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl Acad. Sci. USA 93, 1591–1595 (1996). doi:10.1073/pnas.93.4.1591
Sethian, J.A.: Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge University Press, Cambridge (1999)
Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-or, D.: Competing fronts for coarse-to-fine surface reconstruction. Comput. Graph. Forum 25, 389–398 (2006). doi:10.1111/j.1467-8659.2006.00958.x
Shen, C., Brien, J.F., Shewchuk, J.R.: Interpolation and approximating implicit surfaces from polygonal soup. ACM Trans. Graph. 23 (2004). doi:10.1145/1015706.1015816
Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16, 349–366 (2007). doi:10.1109/TIP.2006.888330
Tsai, Y.R.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys. 178, 175–195 (2002). doi:10.1006/jcph.2002.7028
Wan, M., Wang, Y., Bae, E., Tai, X.C., Wang, V.: Reconstructing open surfaces via graph-cuts. In: CAM, LA, CA, Rep. 10-29, (2010)
Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. Approx. Theory X 473, 473–483 (2002). doi:10.1.1.7.6130
Ye, J., Bresson, X., Goldstein, T., Osher, S.: A fast variational method for surface reconstruction from sets of scattered points. In: CAM, LA, CA, Rep. 01-10, (2001)
Zach, C.: Fast and high quality fusion of depth maps. In: International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), June (2008)
Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: Proceedings of 11th IEEE International Conference on Computer Vision (ICCV ’07), vol. 1, pp. 1–8, October (2007). doi:10.1109/ICCV.2007.4408983
Zhao, H.K.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005). doi:10.1.1.153.6742
Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method. Comput. Vis. Image Underst. 80, 295–314 (2000). doi:10.1006/cviu.2000.0875
Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of IEEE Workshop Variational and Level Set Methods Computer Vision, pp. 194–201, August (2002). doi:10.1109/VLSM.2001.938900
Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: CAM, LA, CA, Rep. 08-34, (2008)
Acknowledgments
This work is partially supported by ARO/MURI grant W911NF-07-1-0185, ONR grant N00014-11-1-0602 and NGA NURI HM1582-10-1-0012. The authors would like to thank Edward Castillo for graciously providing us with his code for computing surface normals to PC data. The author would like to express their thanks to the Stanford 3D scanning Repository for their generosity in distributing their 3D data. The authors would also like to thank Professor Michael Kazhdan for graciously distributing his source code for Poisson surface reconstruction.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, J., Park, F. & Zhao, H. Robust and Efficient Implicit Surface Reconstruction for Point Clouds Based on Convexified Image Segmentation. J Sci Comput 54, 577–602 (2013). https://doi.org/10.1007/s10915-012-9674-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-012-9674-8