Journal of Scientific Computing

, Volume 54, Issue 2–3, pp 247–268 | Cite as

A Multiscale Method for Highly Oscillatory Dynamical Systems Using a Poincaré Map Type Technique

Article

Abstract

We propose a new heterogeneous multiscale method (HMM) for computing the effective behavior of a class of highly oscillatory ordinary differential equations (ODEs). Without the need for identifying hidden slow variables, the proposed method is constructed based on the following ideas: a nonstandard splitting of the vector field (the right hand side of the ODEs); comparison of the solutions of the split equations; construction of effective paths in the state space whose projection onto the slow subspace has the correct dynamics; and a novel on-the-fly filtering technique for achieving a high order accuracy. Numerical examples are given.

Keywords

Oscillatory dynamical system Averaging 

References

  1. 1.
    Ariel, G., Vanden-Eijnden, E.: Accelerated simulation of a heavy particle in a gas of elastic spheres. Multiscale Model. Simul. 7(1), 349–361 (2008) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ariel, G., Engquist, B., Tsai, R.: Numerical multiscale methods for coupled oscillators. Multiscale Model. Simul. 7(3), 1387–1404 (2008) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ariel, G., Engquist, B., Kreiss, H.-O., Tsai, R.: Multiscale computations for highly oscillatory problems. In: Multiscale Modeling and Simulation in Science. Lect. Notes Comput. Sci. Eng., vol. 66, pp. 237–287. Springer, Berlin (2009) CrossRefGoogle Scholar
  4. 4.
    Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009) MathSciNetMATHGoogle Scholar
  5. 5.
    Ariel, G., Engquist, B., Tsai, R.: A reversible multiscale integration method. Commun. Math. Sci. 7(3), 595–610 (2009) MathSciNetMATHGoogle Scholar
  6. 6.
    Ariel, G., Engquist, B., Tsai, R.: Oscillatory systems with three separated time scales: analysis and computation. In: Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol. 82, pp. 23–45. Springer, Berlin (2012) CrossRefGoogle Scholar
  7. 7.
    Ariel, G., Sanz-Serna, J.M., Tsai, R.: A multiscale technique for finding slow manifolds of stiff mechanical systems. Multiscale Model. Simul. 10(4), 1180–1203 (2012) CrossRefGoogle Scholar
  8. 8.
    Artstein, Z., Kevrekidis, I.G., Slemrod, M., Titi, E.S.: Slow observables of singularly perturbed differential equations. Nonlinearity 20(11), 2463–2481 (2007) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Artstein, Z., Linshiz, J., Titi, E.S.: Young measure approach to computing slowly advancing fast oscillations. Multiscale Model. Simul. 6(4), 1085–1097 (2007) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264(2), 539–561 (2006) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bambusi, D., Ponno, A.: Resonance, metastability and blow up in FPU. In: The Fermi-Pasta-Ulam Problem. Lecture Notes in Phys., vol. 728, pp. 191–205. Springer, Berlin (2008) CrossRefGoogle Scholar
  12. 12.
    Bond, S.D., Leimkuhler, B.J.: Molecular dynamics and the accuracy of numerically computed averages. Acta Numer. 16, 1–65 (2007) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media I—Single phase flow. Multiscale Model Simul. 10(2), 515–549 (2012) MATHCrossRefGoogle Scholar
  14. 14.
    Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media II—Single and two phase flow. In: Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol. 66, pp. 161–185 (2013) CrossRefGoogle Scholar
  15. 15.
    Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006) CrossRefGoogle Scholar
  16. 16.
    Condon, M., Deaño, A., Iserles, A.: On second-order differential equations with highly oscillatory forcing terms. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 466(2118), 1809–1828 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30(2), 177–189 (1979) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1(3), 423–436 (2003) MathSciNetMATHGoogle Scholar
  19. 19.
    E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) MathSciNetMATHGoogle Scholar
  20. 20.
    E, W., Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Commun. Math. Sci. 1(2), 385–391 (2003) MathSciNetGoogle Scholar
  21. 21.
    E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007) MathSciNetMATHGoogle Scholar
  22. 22.
    Engquist, B., Tsai, Y.-H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74(252), 1707–1742 (2005) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media over long time. In: Engquist, B., Runborg, O., Tsai, R. (eds.) Numerical Analysis of Multiscale Computations. Lect. Notes Comput. Sci. Eng., vol. 82. Springer, Berlin (2011) Google Scholar
  24. 24.
    Fatkullin, I., Vanden-Eijnden, E.: A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model. J. Comput. Phys. 200, 605–638 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20(3), 930–963 (1999) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003). (electronic) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gear, C.W., Kevrekidis, I.G.: Constraint-defined manifolds: a legacy code approach to low-dimensional computation. J. Sci. Comput. 25(1–2), 17–28 (2005) MathSciNetMATHGoogle Scholar
  28. 28.
    Hairer, E., Lubich, C.: On the energy distribution in Fermi-Pasta-Ulam lattices. Arch. Ration. Mech. Anal. 205(3), 993–1029 (2012) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002) MATHGoogle Scholar
  30. 30.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. In: Acta Numerica, 2000. Acta Numer., vol. 9, pp. 215–365. Cambridge Univ. Press, Cambridge (2000) Google Scholar
  32. 32.
    Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34. Springer, New York (1981) MATHCrossRefGoogle Scholar
  33. 33.
    Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol. 114. Springer, New York (1996) MATHCrossRefGoogle Scholar
  34. 34.
    Kreiss, H.-O.: Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16(6), 980–998 (1979) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Kreiss, H.-O.: Problems with different time scales. In: Acta Numerica, 1992, pp. 101–139. Cambridge Univ. Press, Cambridge (1992) Google Scholar
  36. 36.
    Kreiss, H.-O., Lorenz, J.: Manifolds of slow solutions for highly oscillatory problems. Indiana Univ. Math. J. 42(4), 1169–1191 (1993) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 14. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  38. 38.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer., 357–514 (2001) Google Scholar
  39. 39.
    Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. In: Acta Numerica, 1997. Acta Numer., vol. 6, pp. 437–483. Cambridge Univ. Press, Cambridge (1997) Google Scholar
  40. 40.
    Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985) MATHGoogle Scholar
  41. 41.
    Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994) MATHGoogle Scholar
  42. 42.
    Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8(4), 1269–1324 (2010) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Vanden-Eijnden, E.: Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1, 385–391 (2003) MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • G. Ariel
    • 1
  • B. Engquist
    • 2
  • S. Kim
    • 2
  • Y. Lee
    • 2
  • R. Tsai
    • 2
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.Department of Mathematics and Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA

Personalised recommendations