Journal of Scientific Computing

, Volume 55, Issue 2, pp 372–391

# Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique

Article

## Abstract

A mesh redistribution method is introduced to solve the Kohn-Sham equation. The standard linear finite element space is employed for the spatial discretization, and the self-consistent field iteration scheme is adopted for the derived nonlinear generalized eigenvalue problem. A mesh redistribution technique is used to optimize the distribution of the mesh grids according to wavefunctions obtained from the self-consistent iterations. After the mesh redistribution, important regions in the domain such as the vicinity of the nucleus, as well as the bonding between the atoms, may be resolved more effectively. Consequently, more accurate numerical results are obtained without increasing the number of mesh grids. Numerical experiments confirm the effectiveness and reliability of our method for a wide range of problems. The accuracy and efficiency of the method are also illustrated through examples.

### Keywords

Adaptive mesh redistribution Harmonic map Finite element method Kohn-Sham equation Density functional theory

### References

1. 1.
Baines, M.J., Hubbard, M.E., Jimack, P.K.: Velocity-based moving mesh methods for nonlinear partial differential equations. Commun. Comput. Phys. 10, 509–576 (2011)
2. 2.
Beckett, G., Mackenzie, J.A., Robertson, M.L.: An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826 (2006)
3. 3.
Chen, H.J., Zhou, A.H.: Orbital-free density functional theory for molecular structure calculations. Numer. Math. Theor. Meth. Appl. 1, 1–28 (2008) Google Scholar
4. 4.
Di, Y.N., Li, R., Tang, T.: A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows. Commun. Comput. Phys. 3, 582–602 (2008)
5. 5.
Dvinsky, A.S.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476 (1991)
6. 6.
Echenique, P., Alonso, J.L.: A mathematical and computational review of Hartree-Fock SCF methods in quantum chemistry. Mol. Phys. 105(23–24), 3057–3098 (2007)
7. 7.
Emsley, J.: The Elements. Oxford University Press, London (1991) Google Scholar
8. 8.
Fattebert, J.-L., Buongiorno Nardelli, M.: Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. In: Le Bris, C. (ed.) Computational Chemistry. Handbook of Numerical Analysis, vol. 10, pp. 571–612. Elsevier, Amsterdam (2003). Special volume Google Scholar
9. 9.
Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary, vol. 471. Springer, Berlin (1975)
10. 10.
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)
11. 11.
Hu, G.H., Zegeling, P.A.: Simulating finger phenomenon in porous media with a moving finite element method. J. Comput. Phys. 230, 3249–3263 (2011)
12. 12.
Hu, G.H., Qiao, Z.H., Tang, T.: Moving finite element simulations for reaction-diffusion systems. Adv. Appl. Math. Mech. 4, 365–381 (2012)
13. 13.
Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences. Springer, Berlin (2010) Google Scholar
14. 14.
Hung, L., Huang, C., Carter, E.A.: Preconditioners and electron density optimization in orbital-free density functional theory. Commun. Comput. Phys. 12, 135–161 (2012) Google Scholar
15. 15.
Johnson III, R.D.: NIST computational chemistry comparison and benchmark database, and NIST standard reference database (2011). http://cccbdb.nist.gov/
16. 16.
Kleinman, L., Bylander, D.M.: Effcacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982)
17. 17.
Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSC. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)
18. 18.
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)
19. 19.
Kotochigova, S., Levine, Z.H., Shirley, E.L., Stiles, M.D., Clark, C.W.: Local-density-functional calculations of the energy of atoms. Phys. Rev. A 55, 191–199 (1997)
20. 20.
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, Condens. Matter 54, 11169–11186 (1996)
21. 21.
Lehtovaara, L., Havu, V., Puska, M.: All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys. 131, 054103 (2009)
22. 22.
Li, R., Tang, T., Zhang, P.W.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)
23. 23.
Li, R., Tang, T., Zhang, P.W.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393 (2002)
24. 24.
Lin, L., Lu, J., Ying, L., Weinan, E.: Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys. 231(4), 2140–2154 (2012)
25. 25.
Marques, M., Fiolhais, C., Nogueira, F. (eds.): A Primer in Density Functional Theory. 1st edn. Springer, Berlin (2003)
26. 26.
Marques, M.A.L., Oliveira, M.J.T., Burnus, T.: Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183(10), 2272–2281 (2012)
27. 27.
Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics and Chemistry. NATO ASI Ser. C, vol. 525. Kluwer, Dordrecht (1999) Google Scholar
28. 28.
Oliveira, M.J.T., Nogueira, F.: Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the atomic pseudo-potential engine. Comput. Phys. Commun. 178, 524–534 (2007)
29. 29.
Pask, J.E., Sterne, P.A.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3), R71 (2005)
30. 30.
Perdew, J.P., Wang, Y.: Accurate and simple analytical representation of the electron-gas correlation energy. Phys. Rev. B, Condens. Matter 45, 13244–13249 (1992)
31. 31.
Schoen, R., Yau, S.-T.: On univalent harmonic maps between surfaces. Invent. Math. 44, 265–278 (1978)
32. 32.
Suryanarayana, P., Gavini, V., Blesgen, T., Bhattacharya, K., Ortiz, M.: Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58, 256–280 (2010)
33. 33.
Suryanarayana, P., Bhattacharya, K., Ortiz, M.: A mesh-free convex approximation scheme for Kohn-Sham density functional theory. J. Comput. Phys. 230(13), 5226–5238 (2011)
34. 34.
Tang, T.: Moving mesh methods for computational fluid dynamics. Contemp. Math. 383 (2005) Google Scholar
35. 35.
Torsti, T., Eirola, T., Enkovaara, J., Hakala, T., Havu, P., Havu, V., Höynälänmaa, T., Ignatius, J., Lyly, M., Makkonen, I., Rantala, T.T., Ruokolainen, J., Ruotsalainen, K., Räsänen, E., Saarikoski, H., Puska, M.J.: Three real-space discretization techniques in electronic structure calculations. Phys. Status Solidi (b) 243, 1016–1053 (2006)
36. 36.
Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 43, 1993–2006 (1991)
37. 37.
Tsuchida, E., Tsukada, M.: Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 54, 7602–7605 (1996)
38. 38.
van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216(2), 526–546 (2006)
39. 39.
Veillard, A., Clementi, E.: Correlation energy in atomic systems. V. Degeneracy effects for the second-row atoms. J. Chem. Phys. 49, 2415–2421 (1968)
40. 40.
Wang, H.Y., Li, R., Tang, T.: Efficient computation of dendritic growth with r-adaptive finite element methods. J. Comput. Phys. 227(12), 5984–6000 (2008)
41. 41.
Yang, C., Gao, W.G., Meza, J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009)
42. 42.
Zhang, D.E., Shen, L.H., Zhou, A.H., Gong, X.G.: Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh. Phys. Lett. A 372, 5071–5076 (2008)