Journal of Scientific Computing

, Volume 55, Issue 2, pp 372–391 | Cite as

Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique

Article

Abstract

A mesh redistribution method is introduced to solve the Kohn-Sham equation. The standard linear finite element space is employed for the spatial discretization, and the self-consistent field iteration scheme is adopted for the derived nonlinear generalized eigenvalue problem. A mesh redistribution technique is used to optimize the distribution of the mesh grids according to wavefunctions obtained from the self-consistent iterations. After the mesh redistribution, important regions in the domain such as the vicinity of the nucleus, as well as the bonding between the atoms, may be resolved more effectively. Consequently, more accurate numerical results are obtained without increasing the number of mesh grids. Numerical experiments confirm the effectiveness and reliability of our method for a wide range of problems. The accuracy and efficiency of the method are also illustrated through examples.

Keywords

Adaptive mesh redistribution Harmonic map Finite element method Kohn-Sham equation Density functional theory 

References

  1. 1.
    Baines, M.J., Hubbard, M.E., Jimack, P.K.: Velocity-based moving mesh methods for nonlinear partial differential equations. Commun. Comput. Phys. 10, 509–576 (2011) MathSciNetGoogle Scholar
  2. 2.
    Beckett, G., Mackenzie, J.A., Robertson, M.L.: An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826 (2006) MATHGoogle Scholar
  3. 3.
    Chen, H.J., Zhou, A.H.: Orbital-free density functional theory for molecular structure calculations. Numer. Math. Theor. Meth. Appl. 1, 1–28 (2008) Google Scholar
  4. 4.
    Di, Y.N., Li, R., Tang, T.: A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows. Commun. Comput. Phys. 3, 582–602 (2008) MathSciNetMATHGoogle Scholar
  5. 5.
    Dvinsky, A.S.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476 (1991) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Echenique, P., Alonso, J.L.: A mathematical and computational review of Hartree-Fock SCF methods in quantum chemistry. Mol. Phys. 105(23–24), 3057–3098 (2007) CrossRefGoogle Scholar
  7. 7.
    Emsley, J.: The Elements. Oxford University Press, London (1991) Google Scholar
  8. 8.
    Fattebert, J.-L., Buongiorno Nardelli, M.: Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. In: Le Bris, C. (ed.) Computational Chemistry. Handbook of Numerical Analysis, vol. 10, pp. 571–612. Elsevier, Amsterdam (2003). Special volume Google Scholar
  9. 9.
    Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary, vol. 471. Springer, Berlin (1975) MATHGoogle Scholar
  10. 10.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hu, G.H., Zegeling, P.A.: Simulating finger phenomenon in porous media with a moving finite element method. J. Comput. Phys. 230, 3249–3263 (2011) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hu, G.H., Qiao, Z.H., Tang, T.: Moving finite element simulations for reaction-diffusion systems. Adv. Appl. Math. Mech. 4, 365–381 (2012) MathSciNetGoogle Scholar
  13. 13.
    Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences. Springer, Berlin (2010) Google Scholar
  14. 14.
    Hung, L., Huang, C., Carter, E.A.: Preconditioners and electron density optimization in orbital-free density functional theory. Commun. Comput. Phys. 12, 135–161 (2012) Google Scholar
  15. 15.
    Johnson III, R.D.: NIST computational chemistry comparison and benchmark database, and NIST standard reference database (2011). http://cccbdb.nist.gov/
  16. 16.
    Kleinman, L., Bylander, D.M.: Effcacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982) CrossRefGoogle Scholar
  17. 17.
    Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSC. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kotochigova, S., Levine, Z.H., Shirley, E.L., Stiles, M.D., Clark, C.W.: Local-density-functional calculations of the energy of atoms. Phys. Rev. A 55, 191–199 (1997) CrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, Condens. Matter 54, 11169–11186 (1996) CrossRefGoogle Scholar
  21. 21.
    Lehtovaara, L., Havu, V., Puska, M.: All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys. 131, 054103 (2009) CrossRefGoogle Scholar
  22. 22.
    Li, R., Tang, T., Zhang, P.W.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Li, R., Tang, T., Zhang, P.W.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393 (2002) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lin, L., Lu, J., Ying, L., Weinan, E.: Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys. 231(4), 2140–2154 (2012) MATHCrossRefGoogle Scholar
  25. 25.
    Marques, M., Fiolhais, C., Nogueira, F. (eds.): A Primer in Density Functional Theory. 1st edn. Springer, Berlin (2003) MATHGoogle Scholar
  26. 26.
    Marques, M.A.L., Oliveira, M.J.T., Burnus, T.: Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183(10), 2272–2281 (2012) CrossRefGoogle Scholar
  27. 27.
    Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics and Chemistry. NATO ASI Ser. C, vol. 525. Kluwer, Dordrecht (1999) Google Scholar
  28. 28.
    Oliveira, M.J.T., Nogueira, F.: Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the atomic pseudo-potential engine. Comput. Phys. Commun. 178, 524–534 (2007) CrossRefGoogle Scholar
  29. 29.
    Pask, J.E., Sterne, P.A.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3), R71 (2005) CrossRefGoogle Scholar
  30. 30.
    Perdew, J.P., Wang, Y.: Accurate and simple analytical representation of the electron-gas correlation energy. Phys. Rev. B, Condens. Matter 45, 13244–13249 (1992) CrossRefGoogle Scholar
  31. 31.
    Schoen, R., Yau, S.-T.: On univalent harmonic maps between surfaces. Invent. Math. 44, 265–278 (1978) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Suryanarayana, P., Gavini, V., Blesgen, T., Bhattacharya, K., Ortiz, M.: Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58, 256–280 (2010) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Suryanarayana, P., Bhattacharya, K., Ortiz, M.: A mesh-free convex approximation scheme for Kohn-Sham density functional theory. J. Comput. Phys. 230(13), 5226–5238 (2011) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Tang, T.: Moving mesh methods for computational fluid dynamics. Contemp. Math. 383 (2005) Google Scholar
  35. 35.
    Torsti, T., Eirola, T., Enkovaara, J., Hakala, T., Havu, P., Havu, V., Höynälänmaa, T., Ignatius, J., Lyly, M., Makkonen, I., Rantala, T.T., Ruokolainen, J., Ruotsalainen, K., Räsänen, E., Saarikoski, H., Puska, M.J.: Three real-space discretization techniques in electronic structure calculations. Phys. Status Solidi (b) 243, 1016–1053 (2006) CrossRefGoogle Scholar
  36. 36.
    Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 43, 1993–2006 (1991) CrossRefGoogle Scholar
  37. 37.
    Tsuchida, E., Tsukada, M.: Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 54, 7602–7605 (1996) CrossRefGoogle Scholar
  38. 38.
    van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216(2), 526–546 (2006) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Veillard, A., Clementi, E.: Correlation energy in atomic systems. V. Degeneracy effects for the second-row atoms. J. Chem. Phys. 49, 2415–2421 (1968) CrossRefGoogle Scholar
  40. 40.
    Wang, H.Y., Li, R., Tang, T.: Efficient computation of dendritic growth with r-adaptive finite element methods. J. Comput. Phys. 227(12), 5984–6000 (2008) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Yang, C., Gao, W.G., Meza, J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Zhang, D.E., Shen, L.H., Zhou, A.H., Gong, X.G.: Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh. Phys. Lett. A 372, 5071–5076 (2008) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang UniversityHangzhouChina
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations