Journal of Scientific Computing

, Volume 54, Issue 2–3, pp 492–512 | Cite as

Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems



In this paper, several efficient rearrangement algorithms are proposed to find the optimal shape and topology for elliptic eigenvalue problems with inhomogeneous structures. The goal is to solve minimization and maximization of the k-th eigenvalue and maximization of spectrum ratios of the second order elliptic differential operator. Physically, these problems are motivated by the frequency control based on density distribution of vibrating membranes. The methods proposed are based on Rayleigh quotient formulation of eigenvalues and rearrangement algorithms which can handle topology changes automatically. Due to the efficient rearrangement strategy, the new proposed methods are more efficient than classical level set approaches based on shape and/or topological derivatives. Numerous numerical examples are provided to demonstrate the robustness and efficiency of new approach.


Minimal eigenvalue Maximal eigenvalue Maximal ratio of eigenvalues Elliptic operator Shape optimization Rearrangement algorithm Rayleigh quotient 


  1. 1.
    Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2001) Google Scholar
  2. 2.
    Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216, 573–588 (2006) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bajalinov, E.B.: Linear-Fractional Programming: Theory, Methods, Applications and Software. Kluwer Academic, Boston (2003) MATHGoogle Scholar
  4. 4.
    Bendsoe, M., Sigmund, O.: Topology Optimization. Theory. Methods and Applications. Springer, New York (2003) Google Scholar
  5. 5.
    Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Inverse Probl. 17, 1327–1356 (2001) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cox, S.: The two phase drum with the deepest bass note. Jpn. J. Ind. Appl. Math. 8, 345–355 (1991) MATHCrossRefGoogle Scholar
  8. 8.
    Cox, S., McLaughlin, J.: Extremal eigenvalue problems for composite membranes I and II. Appl. Math. Optim. 22, 153–167 (1990) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cox, S.J.: The generalized gradient at a multiple eigenvalue. J. Funct. Anal. 133, 30–40 (1995) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Haber, E.: A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 198, 518–534 (2004) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    He, L., Kao, C.-Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225, 891–909 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006) MATHGoogle Scholar
  13. 13.
    Ito, K., Kunischm, K., Li, Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225–1242 (2001) MATHCrossRefGoogle Scholar
  14. 14.
    Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kao, C.Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two dimensional photonic crystals by using level set methods. Appl. Phys. B, Lasers Opt. 81, 235–244 (2005) CrossRefGoogle Scholar
  16. 16.
    Kao, C.-Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45(4), 412–427 (2008) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. In: American Mathematical Society Translations, pp. 163–187 (1955) Google Scholar
  18. 18.
    Murqat, F., Simon, S.: Etudes de problems d’optimal design. Lect. Notes Comput. Sci. 41, 52–62 (1976) Google Scholar
  19. 19.
    Osher, J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Rayleigh, J.W.S.: The Theory of Sound, vols. 1, 2. Dover, New York (1945) MATHGoogle Scholar
  22. 22.
    Sethian, J., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 10. Springer, Heidelberg (1992) MATHCrossRefGoogle Scholar
  24. 24.
    Su, S.: Numerical approaches on shape optimization of elliptic eigenvalue problems and shape study of human brains. PhD thesis, The Ohio State University (2010) Google Scholar
  25. 25.
    Wayne, A.: Inequalities and inversion of order. Scr. Math. 12, 164–169 (1946) Google Scholar
  26. 26.
    Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State University ColumbusColumbusUSA
  2. 2.Department of Mathematics and Computer ScienceClaremont McKenna CollegeClaremontUSA
  3. 3.American Electric PowerColumbusUSA

Personalised recommendations