Skip to main content
Log in

A Robust Reconstruction for Unstructured WENO Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barth, T., Frederickson, P.: High order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper No. 90-0013

  2. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Filbet, F., Shu, C.-W.: Approximation of hyperbolic models for chemosensitive movement. SIAM J. Sci. Comput. 27(3), 850–872 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, T.C., Carpenter, M.H., Yamaleev, N.K., Frankel, S.H.: Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes. J. Comput. Phys. 230, 3727–3752 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  8. Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Diraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)

    Article  Google Scholar 

  9. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  11. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Motamed, M., Macdonald, C.B., Ruuth, S.J.: On the linear stability of the fifth-order WENO discretization. J. Sci. Comput. 47, 127–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632–658 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010)

    MathSciNet  Google Scholar 

  21. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y.-T., Shu, C.-W.: Third order WENO schemes on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  Google Scholar 

  25. Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, J., Qiu, J.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: Unstructured meshes. J. Sci. Comput. 39, 293–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J., Qiu, J.: Runge-Kutta discontinuous Galerkin method using WENO type limiters: Three dimensional unstructured meshes. Commun. Comput. Phys. 11, 985–1005 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grant DMS-0810413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, YT. A Robust Reconstruction for Unstructured WENO Schemes. J Sci Comput 54, 603–621 (2013). https://doi.org/10.1007/s10915-012-9598-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9598-3

Keywords

Navigation