Journal of Scientific Computing

, Volume 54, Issue 2–3, pp 603–621

A Robust Reconstruction for Unstructured WENO Schemes



The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.


Weighted essentially non-oscillatory (WENO) schemes Finite volume schemes High-order accuracy Unstructured meshes 


  1. 1.
    Barth, T., Frederickson, P.: High order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper No. 90-0013 Google Scholar
  2. 2.
    Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Filbet, F., Shu, C.-W.: Approximation of hyperbolic models for chemosensitive movement. SIAM J. Sci. Comput. 27(3), 850–872 (2005) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fisher, T.C., Carpenter, M.H., Yamaleev, N.K., Frankel, S.H.: Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes. J. Comput. Phys. 230, 3727–3752 (2011) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Diraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003) CrossRefGoogle Scholar
  9. 9.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005) MATHCrossRefGoogle Scholar
  11. 11.
    Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Motamed, M., Macdonald, C.B., Ruuth, S.J.: On the linear stability of the fifth-order WENO discretization. J. Sci. Comput. 47, 127–149 (2011) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632–658 (2004) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002) MATHCrossRefGoogle Scholar
  19. 19.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010) MathSciNetGoogle Scholar
  21. 21.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273–305 (2007) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Zhang, Y.-T., Shu, C.-W.: Third order WENO schemes on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009) MathSciNetGoogle Scholar
  25. 25.
    Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Zhu, J., Qiu, J.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: Unstructured meshes. J. Sci. Comput. 39, 293–321 (2009) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Zhu, J., Qiu, J.: Runge-Kutta discontinuous Galerkin method using WENO type limiters: Three dimensional unstructured meshes. Commun. Comput. Phys. 11, 985–1005 (2012) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations