Skip to main content
Log in

New, Highly Accurate Propagator for the Linear and Nonlinear Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A propagation method for the time dependent Schrödinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde’s usually results in system of ode’s of the form

$$u_t - G u =s$$
(0.1)

where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schrödinger equation with time-dependent potential and to non-linear Schrödinger equation will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvermanna, A., Fehskeb, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230(15), 5930–5956 (2011)

    Article  MathSciNet  Google Scholar 

  2. Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators. Appl. Numer. Math. Arch. 59(3–4), 568–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Leforestier, C., Bisseling, R., Cerjan, C., Feit, M., Friesner, R., Guldberg, A., Dell Hammerich, A., Julicard, G., Karrlein, W., Dieter Meyer, H., Lipkin, N., Roncero, O., Kosloff, R.: A comparison of different propagation schemes for the time dependent Schrödinger equation. J. Comput. Phys. 94, 59–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hochbruck, M., Ostermann, A.: Exponential integrators of Rosenbrock-type. Oberwolfach Rep. 3, 1107–1110 (2006)

    Google Scholar 

  7. Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89, 188301 (2002)

    Article  Google Scholar 

  8. Kosloff, D., Kosloff, R.: A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983)

    Article  MATH  Google Scholar 

  9. Hochbruck, M., Lubich, C.: Exponential integrators for quantum-classical molecular dynamics. BIT 39, 620–645 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ndong, M., Tal-Ezer, H., Kosloff, R., Koch, C.: A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 132, 064105 (2010)

    Article  Google Scholar 

  11. Ndong, M., Tal-Ezer, H., Kosloff, R., Koch, C.: A Chebychev propagator for inhomogeneous Schrödinger equation. J. Chem. Phys. 130, 124108 (2009)

    Article  Google Scholar 

  12. Meyer, H.-D., Manthe, U., Cederbaum, L.S.: The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165, 73 (1990)

    Article  Google Scholar 

  13. Peskin, U., Kosloff, R., Moiseyev, N.: The solution of the time dependent Schrödinger equation by the (t,t′) method: the use of global polynomial propagators for time dependent Hamiltonians. J. Chem. Phys. 100, 8849–8855 (1994)

    Article  Google Scholar 

  14. Feit, M.D., Fleck, J.A. Jr., Steiger, A.: Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47, 412 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tal Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3970 (1984)

    Article  Google Scholar 

  16. Tal Ezer, H.: On restart and error estimation for Krylov approximation of w=f(A)v. SIAM J. Sci. Comput. 29(6), 2426–2441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tal Ezer, H., Kosloff, R., Cerjan, C.: Low order polynomial approximation of propagators for the time dependent Schrödinger equation. J. Comput. Phys. 100, 179–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tannor, D.J.: Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Press, Sausalito (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel Tal-Ezer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tal-Ezer, H., Kosloff, R. & Schaefer, I. New, Highly Accurate Propagator for the Linear and Nonlinear Schrödinger Equation. J Sci Comput 53, 211–221 (2012). https://doi.org/10.1007/s10915-012-9583-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9583-x

Keywords

Navigation