Skip to main content
Log in

A New Spectral Element Method for Pricing European Options Under the Black–Scholes and Merton Jump Diffusion Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new spectral element method for solving partial integro-differential equations for pricing European options under the Black–Scholes and Merton jump diffusion models. Our main contributions are: (i) using an optimal set of orthogonal polynomial bases to yield banded linear systems and to achieve spectral accuracy; (ii) using Laguerre functions for the approximations on the semi-infinite domain, to avoid the domain truncation; and (iii) deriving a rigorous proof of stability for the time discretizations of European put options under both the Black–Scholes model and the Merton jump diffusion model. The new method is flexible for handling different boundary conditions and non-smooth initial conditions for various contingent claims. Numerical examples are presented to demonstrate the efficiency and accuracy of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing (Frontiers in Applied Mathematics). Frontiers in Applied Mathematics, vol. 30. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  Google Scholar 

  2. Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53(1), 1–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayraktar, E., Xing, H.: Pricing Asian options for jump diffusion. Math. Finance 21(1), 117–143 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973). ArticleType: research-article/Full publication date: May–Jun., 1973/Copyright © 1973 The University of Chicago Press

    Article  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2001)

    MATH  Google Scholar 

  6. Carmona, R., Durrleman, V.: Pricing and hedging spread options. SIAM Rev. 45(4), 627 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carr, P., Cousot, L.: A PDE-approach to jump-diffusions. Quant. Finance 11(1), 33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, P., Madan, D.B., Smith, R.H.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1999)

    Google Scholar 

  9. Chen, H., Liu, F., Reich, N., Winter, C., Zhou, A.: Two-Scale finite element discretizaitons for integrodifferential equations. To appear in J. Integral Equ. Appl. (2011)

  10. Cont, R.: Frontiers in Quantitative Finance: Volatility and Credit Risk Modeling. Wiley, New York (2008)

    Book  Google Scholar 

  11. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43(4), 1596–1626 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Frutos, J.: A spectral method for bonds. Comput. Oper. Res. 35, 64–75 (2008). ACM ID: 1268230

    Article  MathSciNet  MATH  Google Scholar 

  13. Deville, M.O., Fischer, P.F., Mund, E.H.: High Order Methods for Incompressible Fluid Flow, 1st edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  14. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25(1), 87–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Don, W.S., Gottlieb, D.: The Chebyshev–Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations, 2nd edn. Am. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  17. Feng, L., Linetsky, V.: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56(2), 304–325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hurd, T.R., Zhou, Z.: A Fourier transform method for spread option pricing. SIAM J. Financ. Math. 1, 142–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karniadakis, G.E.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, London (2005)

    Book  MATH  Google Scholar 

  20. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance, 2nd edn. Chapman, Hall/CRC, London (2007)

    Google Scholar 

  21. Lee, R.W.: Option pricing by transform methods: extensions, unification and error control. J. Comput. Finance 7(3), 51–86 (2004)

    Google Scholar 

  22. Leentvaar, C.C.W., Oosterlee, C.W.: Multi-asset option pricing using a parallel Fourier-based technique. J. Comput. Finance 12(1), 1–26 (2008)

    MathSciNet  Google Scholar 

  23. Ma, J., Shen, J., Zhao, Y.: On numerical approximations of forward–backward stochastic differential equations. SIAM J. Numer. Anal. 46, 2636–2661 (2008). ACM ID: 1405082

    Article  MathSciNet  MATH  Google Scholar 

  24. Mayo, A.: Methods for the rapid solution of the pricing PIDEs in exponential and Merton models. J. Comput. Appl. Math. 222(1), 128–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  26. Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6, 25–40 (2003)

    Google Scholar 

  27. Salmi, S., Toivanen, J.: An iterative method for pricing American options under jump-diffusion models. Appl. Numer. Math. 61, 821–831 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, J.: Efficient spectral-Galerkin method I: direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J.: Efficient Chebyshev–Legendre Galerkin methods for elliptic problems. In: Ilin, A.V., Scott, R. (eds.) Proceedings of ICOSAHOM’95, pp. 233–240 (1996). Houston J. Math

    Google Scholar 

  30. Shen, J., Wang, L.L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2), 195–241 (2009)

    MathSciNet  Google Scholar 

  31. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Mathematics Monograph Series, vol. 3. Science Press, Beijing (2006)

    MATH  Google Scholar 

  32. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    MATH  Google Scholar 

  33. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tankov, P., Cont, R.: Financial Modelling with Jump Processes, 1st edn. Chapman and Hall/CRC, London (2003)

    Google Scholar 

  35. Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30(4), 1949–1970 (2008)

    Article  MathSciNet  Google Scholar 

  36. Toivanen, J.: A high-order front-tracking finite difference method for pricing American options under jump-diffusion models. J. Comput. Finance 13(3), 61–79 (2010)

    MathSciNet  Google Scholar 

  37. Topper, J.: Finite element methods in bond and option pricing. Soc. Comput. Econ. 131 (1999)

  38. Zhu, W., Kopriva, D.: A spectral element approximation to price European options. II. The Black–Scholes model with two underlying assets. J. Sci. Comput. 39(3), 323–339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, W., Kopriva, D.: A spectral element approximation to price European options with one asset and stochastic volatility. J. Sci. Comput. 42(3), 426–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhu, W., Kopriva, D.A.: A spectral element method to price European options. I. Single asset with and without jump diffusion. J. Sci. Comput. 39(2), 222–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

This work is partially supported by NSF DMS-0915066 and AFOSR FA9550-08-1-0416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Shen, J. & Yu, H. A New Spectral Element Method for Pricing European Options Under the Black–Scholes and Merton Jump Diffusion Models. J Sci Comput 52, 499–518 (2012). https://doi.org/10.1007/s10915-011-9556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9556-5

Keywords

Navigation