Analysis of a Penalty Method


In this article we study the simplest one-dimensional transport equation u t +au x =f and study the implementation of the boundary condition using a penalty method combined with a P1 finite element discretization. We discuss the convergence of the method when both the penalty parameter ϵ and the mesh size h go to zero, in sequence or simultaneously. Some numerical simulations are reported also showing the efficiency of the method. Numerical simulations are also made for the similar problem in space dimension 2.

This is a preview of subscription content, access via your institution.


  1. 1.

    Chen, Q., Qin, Z., Temam, R.: Treatment of incompatible initial and boundary data for parabolic equations in higher dimensions. Math. Comp. 80, 2071–2096 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chen, Q., Qin, Z., Temam, R.: Numerical resolution near t=0 of nonlinear evolution equations in the presence of corner singularities in space dimension 1. Commun. Comput. Phys. 9(3), 568–586 (2011)

    MathSciNet  Google Scholar 

  3. 3.

    Chen, Q., Shiue, M.-C., Temam, R.: The barotropic mode for the primitive equations. J. Sci. Comput. 45, 167–199 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chen, Q., Shiue, M.-C., Temam, R., Tribbia, J.: Numerical approximation of the inviscid 3d primitive equations in a limited domain. Math. Model. Numer. Anal. (to appear)

  5. 5.

    Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943). MR 0007838 (4,200e)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51, 599–613 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57, 585–596 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1–2), 83–131 (2001). Numerical analysis 2000, Vol. VII, Partial differential equations. MR MR1820872 (2001m:65138)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Hesthaven, J.S.: Spectral penalty methods 1. Appl. Numer. Math. 33(1–4), 23–41 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Hörmander, L.: L 2 estimates and existence theorems for the \(\bar{\partial}\) operator. Acta Math. 113, 89–152 (1965). MR 0179443 (31 #3691)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960). MR 0118949 (22 #9718)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). MR 41 #4326

  13. 13.

    Oliger, J., Sundström, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35(3), 419–446 (1978). MR 58 #25389

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Petcu, M., Temam, R.: The one-dimensional shallow water equations with transparent boundary conditions. Math. Methods Appl. Sci. (MMAS) (2011). doi:10.1003/mma.1482

    Google Scholar 

  15. 15.

    Polak, E.: Computational Methods in Optimization. A Unified Approach. Mathematics in Science and Engineering, vol. 77. Academic Press, New York (1971). MR 0282511 (43 #8222)

    Google Scholar 

  16. 16.

    Rousseau, A., Temam, R., Tribbia, J.: The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. J. Math. Pures Appl. 89(3), 297–319 (2008). MR MR2401691

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Rousseau, A., Temam, R.M., Tribbia, J.J.: Boundary value problems for the inviscid primitive equations in limited domains. In: Handbook of Numerical Analysis, vol. XIV, pp. 481–575. Elsevier/North-Holland, Amsterdam (2009). Special volume: Computational Methods for the Atmosphere and the Oceans. MR 2454280 (2010c:86009)

    Google Scholar 

  18. 18.

    Shiue, M.C., Laminie, J., Temam, R., Tribbia, J.: Boundary value problems for the shallow water equations with topography. J. Geophys. Res. 116(C2), C02015 (2011)

    Article  Google Scholar 

  19. 19.

    Temam, R.: Navier-Stokes Equations. AMS, Providence (2001). Theory and numerical analysis, Reprint of the 1984 edition. MR MR1846644 (2002j:76001)

    Google Scholar 

  20. 20.

    Temam, R., Tribbia, J.: Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60(21), 2647–2660 (2003). MR 2 013 931

    MathSciNet  Article  Google Scholar 

  21. 21.

    Temam, R.: Une méthod d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. Fr. 98, 115–152 (1968).

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qingshan Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Q., Hong, Y. & Temam, R. Analysis of a Penalty Method. J Sci Comput 53, 3–34 (2012).

Download citation


  • Boundary conditions
  • Penalty method
  • Galerkin finite element methods
  • Transport equations