Advertisement

Journal of Scientific Computing

, Volume 53, Issue 1, pp 3–34 | Cite as

Analysis of a Penalty Method

  • Qingshan ChenEmail author
  • Youngjoon Hong
  • Roger Temam
Article

Abstract

In this article we study the simplest one-dimensional transport equation u t +au x =f and study the implementation of the boundary condition using a penalty method combined with a P1 finite element discretization. We discuss the convergence of the method when both the penalty parameter ϵ and the mesh size h go to zero, in sequence or simultaneously. Some numerical simulations are reported also showing the efficiency of the method. Numerical simulations are also made for the similar problem in space dimension 2.

Keywords

Boundary conditions Penalty method Galerkin finite element methods Transport equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Q., Qin, Z., Temam, R.: Treatment of incompatible initial and boundary data for parabolic equations in higher dimensions. Math. Comp. 80, 2071–2096 (2007) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, Q., Qin, Z., Temam, R.: Numerical resolution near t=0 of nonlinear evolution equations in the presence of corner singularities in space dimension 1. Commun. Comput. Phys. 9(3), 568–586 (2011) MathSciNetGoogle Scholar
  3. 3.
    Chen, Q., Shiue, M.-C., Temam, R.: The barotropic mode for the primitive equations. J. Sci. Comput. 45, 167–199 (2010) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Q., Shiue, M.-C., Temam, R., Tribbia, J.: Numerical approximation of the inviscid 3d primitive equations in a limited domain. Math. Model. Numer. Anal. (to appear) Google Scholar
  5. 5.
    Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943). MR 0007838 (4,200e) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51, 599–613 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57, 585–596 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1–2), 83–131 (2001). Numerical analysis 2000, Vol. VII, Partial differential equations. MR MR1820872 (2001m:65138) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hesthaven, J.S.: Spectral penalty methods 1. Appl. Numer. Math. 33(1–4), 23–41 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hörmander, L.: L 2 estimates and existence theorems for the \(\bar{\partial}\) operator. Acta Math. 113, 89–152 (1965). MR 0179443 (31 #3691) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960). MR 0118949 (22 #9718) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). MR 41 #4326 Google Scholar
  13. 13.
    Oliger, J., Sundström, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35(3), 419–446 (1978). MR 58 #25389 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Petcu, M., Temam, R.: The one-dimensional shallow water equations with transparent boundary conditions. Math. Methods Appl. Sci. (MMAS) (2011). doi: 10.1003/mma.1482 Google Scholar
  15. 15.
    Polak, E.: Computational Methods in Optimization. A Unified Approach. Mathematics in Science and Engineering, vol. 77. Academic Press, New York (1971). MR 0282511 (43 #8222) Google Scholar
  16. 16.
    Rousseau, A., Temam, R., Tribbia, J.: The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. J. Math. Pures Appl. 89(3), 297–319 (2008). MR MR2401691 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rousseau, A., Temam, R.M., Tribbia, J.J.: Boundary value problems for the inviscid primitive equations in limited domains. In: Handbook of Numerical Analysis, vol. XIV, pp. 481–575. Elsevier/North-Holland, Amsterdam (2009). Special volume: Computational Methods for the Atmosphere and the Oceans. MR 2454280 (2010c:86009) CrossRefGoogle Scholar
  18. 18.
    Shiue, M.C., Laminie, J., Temam, R., Tribbia, J.: Boundary value problems for the shallow water equations with topography. J. Geophys. Res. 116(C2), C02015 (2011) CrossRefGoogle Scholar
  19. 19.
    Temam, R.: Navier-Stokes Equations. AMS, Providence (2001). Theory and numerical analysis, Reprint of the 1984 edition. MR MR1846644 (2002j:76001) Google Scholar
  20. 20.
    Temam, R., Tribbia, J.: Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60(21), 2647–2660 (2003). MR 2 013 931 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Temam, R.: Une méthod d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. Fr. 98, 115–152 (1968). MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA
  2. 2.Institute for Scientific Computing and Applied MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations