Skip to main content
Log in

Parallel Computation of 3-D Soil-Structure Interaction in Time Domain with a Coupled FEM/SBFEM Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper introduces a parallel algorithm for the scaled boundary finite element method (SBFEM). The application code is designed to run on clusters of computers, and it enables the analysis of large-scale soil-structure-interaction problems, where an unbounded domain has to fulfill the radiation condition for wave propagation to infinity. The main focus of the paper is on the mathematical description and numerical implementation of the SBFEM. In particular, we describe in detail the algorithm to compute the acceleration unit impulse response matrices used in the SBFEM as well as the solvers for the Riccati and Lyapunov equations. Finally, two test cases validate the new code, illustrating the numerical accuracy of the results and the parallel performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Google Scholar 

  2. Antes, H., Spyrakos, C.: Soil-structure interaction. In: Beskos, D., Anagnotopoulos, S. (eds.) Computer Analysis and Design of Earthquake Resistant Structures, p. 271. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  3. Appelö, D., Colonius, T.: A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228(11), 4200–4217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Astley, R.J.: Infinite elements for wave problems: a review of current formulations and a assessment of accuracy. Int. J. Numer. Methods Eng. 49(7), 951–976 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)

  6. Benner, P.: Contributions to the numerical solution of algebraic Riccati equations and related eigenvalue problems. Dissertation, Fak. f. Mathematik, TU Chemnitz–Zwickau, Chemnitz, FRG (1997)

  7. Benner, P.: Numerical solution of special algebraic Riccati equations via an exact line search method. In: Proc. European Control Conf. ECC 97, Paper 786, BELWARE Information Technology, Waterloo (B) (1997)

  8. Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Byers, R., Quintana-Ortí, E., Quintana-Ortí, G.: Solving algebraic Riccati equations on parallel computers using Newton’s method with exact line search. Parallel Comput. 26(10), 1345–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Solving linear-quadratic optimal control problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bettess, P.: Infinite Elements. Penshaw Press, Sunderland (1992)

    Google Scholar 

  12. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  13. Borsutzky, R.: Braunschweiger Schriften zur Mechanik - Seismic Risk Analysis of Buried Lifelines, vol. 63. Mechanik-Zentrum Technische Universität. Braunschweig (2008)

  14. Dongarra, J.J., Whaley, R.C.: LAPACK working note 94: A user’s guide to the BLACS v1.1. Tech. Rep. UT-CS-95-281, Department of Computer Science, University of Tennessee (1995)

  15. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Granat, R., Kågström, B.: Algorithm 904: The SCASY library – parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part II. ACM Trans. Math. Softw. 37(3), 33:1–33:4 (2010)

    Google Scholar 

  17. Guerrero, D., Hernández, V., Román, J.E.: Parallel SLICOT model reduction routines: The Cholesky factor of Grammians. In: Proceedings of the 15th Triennal IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  18. Harr, M.E.: Foundations of Theoretical Soil Mechanics. McGraw-Hill, New York (1966)

    Google Scholar 

  19. Hilbert, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283 (1977)

    Article  Google Scholar 

  20. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control AC-13, 114–115 (1968)

    Article  Google Scholar 

  21. Lehmann, L.: Wave Propagation in Infinite Domains. Springer, Berlin (2006)

    Google Scholar 

  22. Lehmann, L., Langer, S., Clasen, D.: Scaled boundary finite element method for acoustics. J. Comput. Acoust. 14(4), 489–506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao, Z.P., Wong, H.L.: A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. Earthq. Eng. 3(4), 174–183 (1984)

    Google Scholar 

  24. Lysmer, J., Kuhlmeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. 95, 859–875 (1969)

    Google Scholar 

  25. Meskouris, K., Hinzen, K.G., Butenweg, C., Mistler, M.: Bauwerke und Erdbeben - Grundlagen - Anwendung - Beispiele. Vieweg Teubner, Wiesbaden (2007)

    Google Scholar 

  26. MPI Forum: The message passing interface (MPI) standard (1994). http://www.mcs.anl.gov/mpi

  27. Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67 (1959)

    Google Scholar 

  28. Petersen, C.: Dynamik der Baukonstruktionen. Vieweg/Sohn Verlagsgesellschaft, Braunschweig (2000)

    Google Scholar 

  29. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32, 677–687 (1980)

    Article  MATH  Google Scholar 

  30. Schauer, M., Lehmann, L.: Large scale simulation with scaled boundary finite element method. Proc. Appl. Math. Mech. 9, 103–106 (2009)

    Article  Google Scholar 

  31. Wolf, J.: The Scaled Boundary Finite Element Method. Wiley, Chichester (2003)

    Google Scholar 

  32. Wolf, J., Song, C.: Finite-Element Modelling of Unbounded Media. Wiley, Chichester (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauer, M., Roman, J.E., Quintana-Ortí, E.S. et al. Parallel Computation of 3-D Soil-Structure Interaction in Time Domain with a Coupled FEM/SBFEM Approach. J Sci Comput 52, 446–467 (2012). https://doi.org/10.1007/s10915-011-9551-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9551-x

Keywords

Navigation