Skip to main content

Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with O(2) Symmetry

Abstract

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when the underlying physical system possesses rotational and reflectional or O(2) symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual Weighted Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented. Here, particular attention is devoted to the problem of flow through a cylindrical pipe with a sudden expansion, which represents a notoriously difficult computational problem.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  2. 2.

    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Aston, P.J.: Analysis and computation of symmetry-breaking bifurcation and scaling laws using group theoretic methods. SIAM J. Math. Anal. 22, 139–152 (1991)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. 7.

    Blackburn, H.M., Sherwin, S.J., Barkley, D.: Convective instability and transient growth in steady and pulsatile stenotic flows. J. Fluid Mech. 607, 267–277 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems 3. Simple bifurcation points. Numer. Math. 38(1), 1–30 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cliffe, K.A., Garratt, T.J., Spence, A.: Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations. Adv. Comput. Math. 1, 337–356 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cliffe, K.A., Spence, A., Tavener, S.J.: O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe. Int. J. Numer. Methods Fluids 32, 175–200 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Cliffe, K.A., Hall, E., Houston, P.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31, 4607–4632 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Cliffe, K.A., Hall, E., Houston, P., Phipps, E.T., Salinger, A.G.: Adaptivity and a posteriori error control for bifurcation problems I: The Bratu problem. Commun. Comput. Phys. 8, 845–865 (2010)

    MathSciNet  Google Scholar 

  13. 13.

    Cliffe, K.A., Hall, E., Houston, P.: Adaptivity and a posteriori error control for bifurcation problems II: Incompressible fluid flow in open systems with Z 2 symmetry. J. Sci. Comput. 47(3), 389–418 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569–593 (2004)

    MATH  Google Scholar 

  16. 16.

    Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    MATH  Google Scholar 

  17. 17.

    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. 18.

    Fearn, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990)

    Article  Google Scholar 

  19. 19.

    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)

    MATH  Google Scholar 

  20. 20.

    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)

    Book  MATH  Google Scholar 

  21. 21.

    Houston, P., Süli, E.: Adaptive finite element approximation of hyperbolic problems. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Eng., vol. 25, pp. 269–344. Springer, Berlin (2002)

    Google Scholar 

  22. 22.

    Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977)

    Google Scholar 

  23. 23.

    Larson, M.G., Barth, T.J.: A posteriori error estimation for discontinuous Galerkin approximations of hyperbolic systems. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  24. 24.

    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Google Scholar 

  25. 25.

    Mullin, T., Seddon, J.R.T., Mantle, M.D., Sederman, A.J.: Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21 (2009)

  26. 26.

    Pironneau, O., Hecht, F., Le Hyaric, A., Morice, J.: Freefem++. Technical report (2010). www.freefem.org/ff++/

  27. 27.

    Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotics flows. J. Fluid Mech. 533, 297–327 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, London (1982)

    MATH  Google Scholar 

  29. 29.

    Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388–399 (1984)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Houston.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cliffe, K.A., Hall, E.J.C., Houston, P. et al. Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with O(2) Symmetry. J Sci Comput 52, 153–179 (2012). https://doi.org/10.1007/s10915-011-9545-8

Download citation

Keywords

  • Incompressible flows
  • Bifurcation problems
  • A posteriori error estimation
  • Adaptivity
  • Discontinuous Galerkin methods
  • O(2) symmetry