Skip to main content
Log in

Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with O(2) Symmetry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when the underlying physical system possesses rotational and reflectional or O(2) symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual Weighted Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented. Here, particular attention is devoted to the problem of flow through a cylindrical pipe with a sudden expansion, which represents a notoriously difficult computational problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    Article  MathSciNet  Google Scholar 

  5. Aston, P.J.: Analysis and computation of symmetry-breaking bifurcation and scaling laws using group theoretic methods. SIAM J. Math. Anal. 22, 139–152 (1991)

    Article  MathSciNet  Google Scholar 

  6. Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Blackburn, H.M., Sherwin, S.J., Barkley, D.: Convective instability and transient growth in steady and pulsatile stenotic flows. J. Fluid Mech. 607, 267–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems 3. Simple bifurcation points. Numer. Math. 38(1), 1–30 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cliffe, K.A., Garratt, T.J., Spence, A.: Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations. Adv. Comput. Math. 1, 337–356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cliffe, K.A., Spence, A., Tavener, S.J.: O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe. Int. J. Numer. Methods Fluids 32, 175–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cliffe, K.A., Hall, E., Houston, P.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31, 4607–4632 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cliffe, K.A., Hall, E., Houston, P., Phipps, E.T., Salinger, A.G.: Adaptivity and a posteriori error control for bifurcation problems I: The Bratu problem. Commun. Comput. Phys. 8, 845–865 (2010)

    MathSciNet  Google Scholar 

  13. Cliffe, K.A., Hall, E., Houston, P.: Adaptivity and a posteriori error control for bifurcation problems II: Incompressible fluid flow in open systems with Z 2 symmetry. J. Sci. Comput. 47(3), 389–418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569–593 (2004)

    MATH  Google Scholar 

  16. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    MATH  Google Scholar 

  17. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. Fearn, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990)

    Article  Google Scholar 

  19. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)

    MATH  Google Scholar 

  20. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)

    Book  MATH  Google Scholar 

  21. Houston, P., Süli, E.: Adaptive finite element approximation of hyperbolic problems. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Eng., vol. 25, pp. 269–344. Springer, Berlin (2002)

    Google Scholar 

  22. Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977)

    Google Scholar 

  23. Larson, M.G., Barth, T.J.: A posteriori error estimation for discontinuous Galerkin approximations of hyperbolic systems. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  24. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Google Scholar 

  25. Mullin, T., Seddon, J.R.T., Mantle, M.D., Sederman, A.J.: Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21 (2009)

  26. Pironneau, O., Hecht, F., Le Hyaric, A., Morice, J.: Freefem++. Technical report (2010). www.freefem.org/ff++/

  27. Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotics flows. J. Fluid Mech. 533, 297–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, London (1982)

    MATH  Google Scholar 

  29. Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388–399 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Houston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cliffe, K.A., Hall, E.J.C., Houston, P. et al. Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with O(2) Symmetry. J Sci Comput 52, 153–179 (2012). https://doi.org/10.1007/s10915-011-9545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9545-8

Keywords

Navigation