Skip to main content
Log in

Sparsity Enforcing Edge Detection Method for Blurred and Noisy Fourier data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new method for estimating the edges in a piecewise smooth function from blurred and noisy Fourier data. The proposed method is constructed by combining the so called concentration factor edge detection method, which uses a finite number of Fourier coefficients to approximate the jump function of a piecewise smooth function, with compressed sensing ideas. Due to the global nature of the concentration factor method, Gibbs oscillations feature prominently near the jump discontinuities. This can cause the misidentification of edges when simple thresholding techniques are used. In fact, the true jump function is sparse, i.e. zero almost everywhere with non-zero values only at the edge locations. Hence we adopt an idea from compressed sensing and propose a method that uses a regularized deconvolution to remove the artifacts. Our new method is fast, in the sense that it only needs the solution of a single l 1 minimization. Numerical examples demonstrate the accuracy and robustness of the method in the presence of noise and blur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, C.B., Kim, J.H., Cho, Z.H.: High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans. Med. Imaging 5(1), 2 (1986)

    Article  Google Scholar 

  2. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  4. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cochran, D., Gelb, A., Wang, Y.: Edge detection from truncated Fourier data using spectral mollifiers, preprint, submitted to Advances in Computational Mathematics (2011)

  6. Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise—a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51(2), 560–574 (2003)

    Article  MathSciNet  Google Scholar 

  8. Gelb, A., Cates, D.: Detection of edges in spectral data III—refinement of the concentration method. J. Sci. Comput. 36(1), 1–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. Nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (2010)

  14. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Nonconvex Optimization and its Applications, pp. 155–210. Springer, Berlin (2006)

    Google Scholar 

  15. Guo, W., Yin, W.: EdgeCS: edge guided compressive sensing reconstruction. Technical report, Rice CAAM Report TR10-02, 2010

  16. Hoge, R.D., Kwan, R.K., Pike, G.B.: Density compensation functions for spiral MRI. Magn. Reson. Med. 38(1), 117–128 (1997)

    Article  Google Scholar 

  17. Kadec, M.I.: The exact value of the Paley-Wiener constant. Sov. Math. Dokl. 5, 559–561 (1964)

    Google Scholar 

  18. O’Sullivan, J.D.: A fast sinc function griding algorithm for Fourier inversion in computer tomography. IEEE Trans. Med. Imaging 4(4), 200–207 (1985)

    Article  Google Scholar 

  19. Pipe, J.G., Menon, P.: Sampling density compensation in MRI: Rationale and an iterative numerical solution. Magn. Reson. Med. 41(1), 179–186 (1999)

    Article  Google Scholar 

  20. Sedarat, H., Nishimura, D.G.: On the optimality of the griding reconstruction algorithm. IEEE Trans. Med. Imaging 19(4), 306–317 (2000)

    Article  Google Scholar 

  21. Shizgal, B., Jung, J.H.: Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 161(1), 41–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stefan, W., Renaut, R.A., Gelb, A.: Improved total variation-type regularization using higher-order edge detectors. SIAM J. Imaging Sci. 3(2), 232–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9(3), 337–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999). Special issue on Interior Point Methods (CD supplement with software), http://sedumi.mcmaster.ca/

    Article  MathSciNet  Google Scholar 

  25. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tadmor, E., Zou, J.: Three novel edge detection methods for incomplete and noisy spectral data. J. Fourier Anal. Appl. 14(5–6), 744–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toh, K., Tütüncü, R., Todd, M.: SDPT3 4.0 (beta) (software package). Technical report, Department of Mathematics National University of Singapore, September 2006. http://www.math.nus.edu.sg/mattohkc/sdpt3.html

  28. Viswanathan, A.: Imaging from Fourier spectral data: problems in discontinuity detection, non-harmonic Fourier reconstruction and point-spread function estimation. PhD thesis, Arizona State University (2010)

  29. Viswanathan, A., Gelb, A., Cochran, D.: Iterative design of concentration factors for edge detection. J. Sci. Comput. (2011, to appear)

  30. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, R.M.: An Introduction to Nonharmonic Fourier Analysis. Academic Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Stefan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefan, W., Viswanathan, A., Gelb, A. et al. Sparsity Enforcing Edge Detection Method for Blurred and Noisy Fourier data. J Sci Comput 50, 536–556 (2012). https://doi.org/10.1007/s10915-011-9536-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9536-9

Keywords

Navigation