Skip to main content
Log in

Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belaouar, R., Crouseilles, N., Degond, P., Sonnendrücker, E.: An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit. J. Sci. Comput. 41, 341–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchut, F.: On zero pressure gas dynamics. In: Perthame, B. (ed.) Advances in Kinetic Theory and Computing, pp. 171–190. World Scientific, Singapore (1994)

    Google Scholar 

  3. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24, 2173–2189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenier, Y., Corrias, L.: A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, 169–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35, 2317–2328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1. Plenum, New York (1974)

    Google Scholar 

  7. Chen, G.-Q., Liu, H.L.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G.-Q., Liu, H.L.: Concentration and cavitation in solutions of the Euler equations for nonisentropic fluids as the pressure vanishes. Physica D 189, 141–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, L.T., Liu, H.-L., Osher, O.: Computational high frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1(3), 593–621 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Choe, H.-H., Yoon, N.S., Kim, S.S., Choi, D.-I.: A new unconditionally stable algorithm for steady-state fluid simulation of high density plasma discharge. J. Comput. Phys. 170, 550–561 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, B.I., Langdon, A.B., Friedman, A.: Implicit time integration for plasma simulation. J. Comput. Phys. 46, 15–38 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colella, Ph., Dorr, M.R., Wake, D.D.: A conservative finite difference method for the numerical solution of plasma fluid equations. J. Comput. Phys. 152, 550–583 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crispel, P., Degond, P., Vignal, M.-H.: An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit. J. Comput. Phys. 223, 208–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the Isentropic Euler equation. Commun. Comput. Phys. (2011, to appear)

  15. Degond, P., Peyrard, P.-F., Russo, G., Villedieu, Ph.: Polynomial upwind schemes for hyperbolic systems. C. R. Math. 328, 479–483 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Degond, P., Liu, J.-G., Vignal, M.-H.: Analysis of an asymptotic preserving scheme for the Euler-Poison system in the quasineutral limit. SIAM J. Numer. Anal. 46, 1298–1322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Degond, P., Deluzet, F., Sangam, A., Vignal, M.-H.: An asymptotic preserving scheme for the Euler equations in a strong magnetic field. J. Comput. Phys. 228, 3540–3558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Degond, P., Deluzet, F., Navoret, L., Sun, A.-B., Vignal, M.-H.: Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality. J. Comput. Phys. 229, 5630–5652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Degond, P., Deluzet, F., Negulescu, C.: An Asymptotic-Preserving scheme for strongly anisotropic problems. Multiscale Model. Simul. 8, 645–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fabre, S.: Stability analysis of the Euler-Poisson equations. J. Comput. Phys. 101, 445–451 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, S., Osher, S.: A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. Commun. Math. Sci. 1(3), 575–591 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Jin, S., Liu, H.-L., Osher, S., Tsai, Y.H.: Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210, 497–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. San Francisco Press, San Francisco (1986)

    Google Scholar 

  25. Langdon, A.B., Cohen, B.I., Friedman, A.: Direct implicit large time-step particle simulation of plasmas. J. Comput. Phys. 51, 107–138 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leveque, R.J.: Finite Volume Method for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  27. Li, X., Wöhlbier, J., Jin, S., Booske, J.: An Eulerian method for computing multi-valued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons. Phys. Rev. E 70, 016502 (2004)

    Article  Google Scholar 

  28. Liu, H., Slemrod, M.: KDV dynamics in the plasma-sheath transition. Appl. Math. Lett. 17, 401–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, H., Wang, Z.: Computing multi-valued velocity and electric fields for 1D Euler-Poisson equations. Appl. Numer. Math. 57, 821–836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, H., Wang, Z.: A field space-based level set method for computing multi-valued solutions to 1D Euler-Poisson equations. J. Comput. Phys. 25, 591–614 (2007)

    Article  Google Scholar 

  31. Mason, R.J.: Implicit moment particle simulation of plasmas. J. Comput. Phys. 41, 233–244 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mason, R.J.: Implicit moment PIC-hybrid simulation of collisional plasmas. J. Comput. Phys. 51, 484–501 (1983)

    Article  MATH  Google Scholar 

  33. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. U.S.S.R. Comput. Math. Math. Phys. 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  34. Schneider, R., Munz, C.-D.: The approximation of two-fluid plasma flow with explicit upwind schemes. Int. J. Numer. Model. 8, 399–416 (2005)

    Article  Google Scholar 

  35. Shumlak, U., Loverich, J.: Approximate Riemann solver for the two-fluid plasma model. J. Comput. Phys. 187, 620–638 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Degond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degond, P., Liu, H., Savelief, D. et al. Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit. J Sci Comput 51, 59–86 (2012). https://doi.org/10.1007/s10915-011-9495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9495-1

Keywords

Navigation