Skip to main content

Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z 2 Symmetry

Abstract

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Series in Computational and Applied Mathematics. Elsevier, Amsterdam (1996)

    Google Scholar 

  2. 2.

    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  4. 4.

    Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  5. 5.

    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    Article  MathSciNet  Google Scholar 

  6. 6.

    Aston, P.J.: Analysis and computation of symmetry-breaking bifurcation and scaling laws using group theoretic methods. SIAM J. Math. Anal. 22, 139–152 (1991)

    Article  MathSciNet  Google Scholar 

  7. 7.

    Babuška, I., Osborn, J.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  8. 8.

    Babuška, I., Tsuchiya, T.: A posteriori error estimates of the finite element solutions of parameterized nonlinear equations. Technical report, University of Maryland (1992)

  9. 9.

    Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  10. 10.

    Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  11. 11.

    Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems. 3. Simple bifurcation points. Numer. Math. 38(1), 1–30 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Cliffe, K.A., Garratt, T.J., Spence, A.: Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations. Adv. Comput. Math. 1, 337–356 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Cliffe, K.A., Hall, E., Houston, P.: Adaptivity and a posteriori error control for bifurcation problems III: Incompressible fluid flow in open systems with O(2) symmetry. In preparation

  14. 14.

    Cliffe, K.A., Hall, E., Houston, P.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31, 4607–4632 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Cliffe, K.A., Hall, E., Houston, P., Phipps, E.T., Salinger, A.G.: Adaptivity and a posteriori error control for bifurcation problems I: The Bratu problem. Commun. Comput. Phys. 8, 845–865 (2010)

    MathSciNet  Google Scholar 

  16. 16.

    Cliffe, K.A., Spence, A., Tavener, S.J.: O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe. Int. J. Numer. Methods Fluids 32, 175–200 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Cliffe, K.A., Tavener, S.J.: The effect of cylinder rotation and blockage ratio on the onset of periodic flows. J. Fluid Mech. 501, 125–133 (2004)

    Article  MATH  Google Scholar 

  18. 18.

    Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569–593 (2004)

    MATH  Google Scholar 

  19. 19.

    Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Durán, R.G., Padra, C., Rodriguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. 23.

    Fearn, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990)

    Article  Google Scholar 

  24. 24.

    Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)

    MATH  Google Scholar 

  26. 26.

    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)

    MATH  Google Scholar 

  27. 27.

    Griewank, A., Reddien, G.: The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3(3), 295–303 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. 28.

    Hansbo, P., Larson, M.G.: Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 2002 (1895–1908)

    MathSciNet  Google Scholar 

  29. 29.

    Hartmann, R.: Adaptive finite element methods for the compressible Euler equations. Ph.D. thesis, University of Heidelberg (2002)

  30. 30.

    Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    Houston, P., Süli, E.: Adaptive finite element approximation of hyperbolic problems. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Engrg, vol. 25, pp. 269–344. Springer, Berlin (2002)

    Google Scholar 

  33. 33.

    Jepson, A.D.: Numerical Hopf Bifurcation. Ph.D. thesis. Caltech, Pasadena (1981)

  34. 34.

    Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977)

    Google Scholar 

  35. 35.

    Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Larson, M.G., Barth, T.J.: A posteriori error estimation for discontinuous Galerkin approximations of hyperbolic systems. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  37. 37.

    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Google Scholar 

  38. 38.

    Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equ. 24, 244–257 (2009)

    Article  MathSciNet  Google Scholar 

  39. 39.

    Nystedt, C.: A priori and a posteriori error estimates and adaptive finite element methods for a model eigenvalue problem. Technical report 1995-05, Chalmers Finite Element Center, Chalmers University (1995)

  40. 40.

    Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)

    Article  MATH  Google Scholar 

  41. 41.

    Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. 42.

    Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  43. 43.

    Toselli, A.: hp-Discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565–1616 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. 44.

    Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, London (1982)

    MATH  Google Scholar 

  45. 45.

    Verfürth, R.: A posteriori error estimates for nonlinear problems. Math. Comput. 62, 445–475 (1989)

    Google Scholar 

  46. 46.

    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996)

    MATH  Google Scholar 

  47. 47.

    Walsh, T.F., Reese, G.M., Hetmaniuk, U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196, 3614–3623 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. 48.

    Werner, B., Janovsky, V.: Computation of Hopf branches bifurcating from Takens-Bogdanov points for problems with symmetries. In: Seydel, R., Schneider, F.W., Kupper, T., Troger, H. (eds.) Bifurcation and Chaos: Analysis, Algorithms, Applications. International Series of Numerical Mathematics, vol. 97, pp. 377–388 (1991)

    Google Scholar 

  49. 49.

    Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388–399 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Houston.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cliffe, K.A., Hall, E.J.C., Houston, P. et al. Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z 2 Symmetry. J Sci Comput 47, 389–418 (2011). https://doi.org/10.1007/s10915-010-9453-3

Download citation

Keywords

  • Incompressible flows
  • Bifurcation problems
  • A posteriori error estimation
  • Adaptivity
  • Discontinuous Galerkin methods
  • Z2 symmetry