# Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

## Abstract

This paper develops and analyzes finite element Galerkin and spectral Galerkin methods for approximating viscosity solutions of the fully nonlinear Monge-Ampère equation det (D 2 u 0)=f (>0) based on the vanishing moment method which was developed by the authors in Feng and Neilan (J. Sci. Comput. 38:74–98, 2009) and Feng (Convergence of the vanishing moment method for the Monge-Ampère equation, submitted). In this approach, the Monge-Ampère equation is approximated by the fourth order quasilinear equation −εΔ2 u ε+det D 2 u ε=f accompanied by appropriate boundary conditions. This new approach enables us to construct convergent Galerkin numerical methods for the fully nonlinear Monge-Ampère equation (and other fully nonlinear second order partial differential equations), a task which has been impracticable before. In this paper, we first develop some finite element and spectral Galerkin methods for approximating the solution u ε of the regularized problem. We then derive optimal order error estimates for the proposed numerical methods. In particular, we track explicitly the dependence of the error bounds on the parameter ε, for the error $$u^{\varepsilon}-u^{\varepsilon}_{h}$$. Due to the strong nonlinearity of the underlying equation, the standard error estimate technique, which has been widely used for error analysis of finite element approximations of nonlinear problems, does not work here. To overcome the difficulty, we employ a fixed point technique which strongly makes use of the stability property of the linearized problem and its finite element approximations. Finally, using the Argyris finite element method as an example, we present a detailed numerical study of the rates of convergence in terms of powers of ε for the error $$u^{0}-u_{h}^{\varepsilon}$$, and numerically examine what is the “best” mesh size h in relation to ε in order to achieve these rates.

This is a preview of subscription content, access via your institution.

## References

1. 1.

Aleksandrov, A.D.: Certain estimates for the Dirichlet problem. Sov. Math. Dokl. 1, 1151–1154 (1961)

2. 2.

Baginski, F.E., Whitaker, N.: Numerical solutions of boundary value problems for $$\mathcal{K}$$-surfaces in R 3. Numer. Methods Partial Differ. Equ. 12(4), 525–546 (1996)

3. 3.

Bakelman, I.J.: Generalized elliptic solutions of the Dirichlet problem for n-dimensional Monge-Ampère equations. In: Nonlinear Functional Analysis and Its Applications, Part 1, Berkeley, Calif., 1983. Proc. Sympos. Pure Math., vol. 45, pp. 73–102 (1986)

4. 4.

Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

5. 5.

Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

6. 6.

Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis. Handb. Numer. Anal., vol. V, pp. 209–485. North-Holland, Amsterdam (1997)

7. 7.

Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)

8. 8.

Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

9. 9.

Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. Am. Math. Soc., Providence (1995)

10. 10.

Caffarelli, L.A., Milman, M.: Monge Ampère Equation: Applications to Geometry and Optimization. Contemporary Mathematics. Am. Math. Soc., Providence (1999)

11. 11.

Cheng, S.Y., Yau, S.T.: On the regularity of the Monge-Ampère equation det ( 2 u/∂x i ∂x j )=F(x,u). Commun. Pure Appl. Math. 30(1), 41–68 (1977)

12. 12.

Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

13. 13.

Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

14. 14.

Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull., New Ser., Am. Math. Soc. 27(1), 1–67 (1992)

15. 15.

Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

16. 16.

Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998)

17. 17.

Feng, X.: Convergence of the vanishing moment method for the Monge-Ampère equation (submitted)

18. 18.

Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

19. 19.

Feng, X., Neilan, M.: Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38, 74–98 (2009)

20. 20.

Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47, 1226–1250 (2009)

21. 21.

Feng, X., Neilan, M.: The vanishing moment method for fully nonlinear second order PDEs: formulation, theory, and numerical analysis (submitted)

22. 22.

Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. www.arxiv.org/abs/0712.1240

23. 23.

Feng, X., Neilan, M., Prohl, A.: Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity. Numer. Math. 108(1), 93–119 (2007)

24. 24.

Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)

25. 25.

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edn.

26. 26.

Gutierrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhauser, Boston (2001)

27. 27.

Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Advanced Publishing Program

28. 28.

Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second order PDE’s. Commun. Pure Appl. Math. 42, 14–45 (1989)

29. 29.

Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27 (1988)

30. 30.

McCann, R.J., Oberman, A.M.: Exact semi-geostrophic flows in an elliptical ocean basin. Nonlinearity 17(5), 1891–1922 (2004)

31. 31.

Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Meth. Appl. Math. 3, 596–607 (2003)

32. 32.

Neilan, M.: Numerical methods for fully nonlinear second order partial differential equations. Ph.D. Dissertation, The University of Tennessee (2009)

33. 33.

Oberman, A.M.: Wide stencil finite difference schemes for elliptic Monge-Ampére equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. B 10, 271–293 (2008)

34. 34.

Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation ( 2 z/∂x 2)( 2 z/∂y 2)−(( 2 z/∂x∂y))2=f and its discretizations. I. Numer. Math. 54(3), 271–293 (1988)

35. 35.

Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

36. 36.

Nilssen, T., Tai, X.-C., Wagner, R.: A robust nonconfirming H 2 element. Math. Comput. 70, 489–505 (2000)

37. 37.

Wang, M., Xu, J.: Some tetrahedron nonconforming elements for fourth order elliptic equations. Math. Comput. 76, 1–18 (2007)

38. 38.

Wang, M., Shi, Z., Xu, J.: A new class of Zienkiewicz-type nonconforming elements in any dimensions. Numer. Math. 106, 335–347 (2007)

## Author information

Authors

### Corresponding author

Correspondence to Xiaobing Feng.

This work was partially supported by the NSF grants DMS-0410266 and DMS-0710831.

## Rights and permissions

Reprints and Permissions

Feng, X., Neilan, M. Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation. J Sci Comput 47, 303–327 (2011). https://doi.org/10.1007/s10915-010-9439-1

• Revised:

• Accepted:

• Published:

• Issue Date:

### Keywords

• Fully nonlinear PDEs
• Monge-Ampère equation
• Moment solutions
• Vanishing moment method
• Viscosity solutions
• Finite element methods
• Spectral Galerkin methods
• Argyris element