Skip to main content

Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

Abstract

This paper develops and analyzes finite element Galerkin and spectral Galerkin methods for approximating viscosity solutions of the fully nonlinear Monge-Ampère equation det (D 2 u 0)=f (>0) based on the vanishing moment method which was developed by the authors in Feng and Neilan (J. Sci. Comput. 38:74–98, 2009) and Feng (Convergence of the vanishing moment method for the Monge-Ampère equation, submitted). In this approach, the Monge-Ampère equation is approximated by the fourth order quasilinear equation −εΔ2 u ε+det D 2 u ε=f accompanied by appropriate boundary conditions. This new approach enables us to construct convergent Galerkin numerical methods for the fully nonlinear Monge-Ampère equation (and other fully nonlinear second order partial differential equations), a task which has been impracticable before. In this paper, we first develop some finite element and spectral Galerkin methods for approximating the solution u ε of the regularized problem. We then derive optimal order error estimates for the proposed numerical methods. In particular, we track explicitly the dependence of the error bounds on the parameter ε, for the error \(u^{\varepsilon}-u^{\varepsilon}_{h}\). Due to the strong nonlinearity of the underlying equation, the standard error estimate technique, which has been widely used for error analysis of finite element approximations of nonlinear problems, does not work here. To overcome the difficulty, we employ a fixed point technique which strongly makes use of the stability property of the linearized problem and its finite element approximations. Finally, using the Argyris finite element method as an example, we present a detailed numerical study of the rates of convergence in terms of powers of ε for the error \(u^{0}-u_{h}^{\varepsilon}\), and numerically examine what is the “best” mesh size h in relation to ε in order to achieve these rates.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aleksandrov, A.D.: Certain estimates for the Dirichlet problem. Sov. Math. Dokl. 1, 1151–1154 (1961)

    Google Scholar 

  2. 2.

    Baginski, F.E., Whitaker, N.: Numerical solutions of boundary value problems for \(\mathcal{K}\)-surfaces in R 3. Numer. Methods Partial Differ. Equ. 12(4), 525–546 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Bakelman, I.J.: Generalized elliptic solutions of the Dirichlet problem for n-dimensional Monge-Ampère equations. In: Nonlinear Functional Analysis and Its Applications, Part 1, Berkeley, Calif., 1983. Proc. Sympos. Pure Math., vol. 45, pp. 73–102 (1986)

    Google Scholar 

  4. 4.

    Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MATH  MathSciNet  Google Scholar 

  5. 5.

    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis. Handb. Numer. Anal., vol. V, pp. 209–485. North-Holland, Amsterdam (1997)

    Google Scholar 

  7. 7.

    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  8. 8.

    Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. Am. Math. Soc., Providence (1995)

    MATH  Google Scholar 

  10. 10.

    Caffarelli, L.A., Milman, M.: Monge Ampère Equation: Applications to Geometry and Optimization. Contemporary Mathematics. Am. Math. Soc., Providence (1999)

    MATH  Google Scholar 

  11. 11.

    Cheng, S.Y., Yau, S.T.: On the regularity of the Monge-Ampère equation det ( 2 u/∂x i ∂x j )=F(x,u). Commun. Pure Appl. Math. 30(1), 41–68 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  13. 13.

    Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull., New Ser., Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  17. 17.

    Feng, X.: Convergence of the vanishing moment method for the Monge-Ampère equation (submitted)

  18. 18.

    Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Feng, X., Neilan, M.: Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38, 74–98 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47, 1226–1250 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Feng, X., Neilan, M.: The vanishing moment method for fully nonlinear second order PDEs: formulation, theory, and numerical analysis (submitted)

  22. 22.

    Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. www.arxiv.org/abs/0712.1240

  23. 23.

    Feng, X., Neilan, M., Prohl, A.: Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity. Numer. Math. 108(1), 93–119 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  25. 25.

    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edn.

    Google Scholar 

  26. 26.

    Gutierrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  27. 27.

    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Advanced Publishing Program

    MATH  Google Scholar 

  28. 28.

    Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second order PDE’s. Commun. Pure Appl. Math. 42, 14–45 (1989)

    Article  Google Scholar 

  29. 29.

    Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27 (1988)

    Article  MATH  Google Scholar 

  30. 30.

    McCann, R.J., Oberman, A.M.: Exact semi-geostrophic flows in an elliptical ocean basin. Nonlinearity 17(5), 1891–1922 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Meth. Appl. Math. 3, 596–607 (2003)

    MATH  Google Scholar 

  32. 32.

    Neilan, M.: Numerical methods for fully nonlinear second order partial differential equations. Ph.D. Dissertation, The University of Tennessee (2009)

  33. 33.

    Oberman, A.M.: Wide stencil finite difference schemes for elliptic Monge-Ampére equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. B 10, 271–293 (2008)

    MathSciNet  Google Scholar 

  34. 34.

    Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation ( 2 z/∂x 2)( 2 z/∂y 2)−(( 2 z/∂x∂y))2=f and its discretizations. I. Numer. Math. 54(3), 271–293 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. 35.

    Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Nilssen, T., Tai, X.-C., Wagner, R.: A robust nonconfirming H 2 element. Math. Comput. 70, 489–505 (2000)

    Article  Google Scholar 

  37. 37.

    Wang, M., Xu, J.: Some tetrahedron nonconforming elements for fourth order elliptic equations. Math. Comput. 76, 1–18 (2007)

    Article  MATH  Google Scholar 

  38. 38.

    Wang, M., Shi, Z., Xu, J.: A new class of Zienkiewicz-type nonconforming elements in any dimensions. Numer. Math. 106, 335–347 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Feng.

Additional information

This work was partially supported by the NSF grants DMS-0410266 and DMS-0710831.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, X., Neilan, M. Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation. J Sci Comput 47, 303–327 (2011). https://doi.org/10.1007/s10915-010-9439-1

Download citation

Keywords

  • Fully nonlinear PDEs
  • Monge-Ampère equation
  • Moment solutions
  • Vanishing moment method
  • Viscosity solutions
  • Finite element methods
  • Spectral Galerkin methods
  • Argyris element