Skip to main content
Log in

A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, N., Lindeman, J.: Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids 54, 47–72 (2006)

    Article  MathSciNet  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bale, D., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave-propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, M.J., Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular finite volume methods with adaptive refinement on the sphere. Philos. Trans. R. Soc. A 367, 4483–4496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bermúdez, A., Vázquez Cendón, M.E.: Upwind methods for hyperbolic conservations laws with source term. Comput. Fluids 23, 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Botta, N., Klein, R., Langenberg, S., Lützenkirchen, S.: Well balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys. 196, 539–565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  8. Castro, M., Gallardo, J.M., López, J.A., Parés, C.: Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46, 1012–1039 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Castro, M.J., LeFloch, P.G., Munoz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Castro Díaz, M.J., Chacón Rebollo, T., Fernández-Nieto, E.D., Parés, C.: On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems. SIAM J. Sci. Comput. 29(3), 1093–1126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colombeau, J.-F., LeRoux, A.Y., Noussair, A., Perrot, B.: Microscopic profiles of shock waves and ambiguities in multiplications of distributions. SIAM J. Numer. Anal. 26, 871–883 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  13. George, D.L.: Finite volume methods and adaptive refinement for tsunami propagation and inundation. PhD thesis, University of Washington (2006)

  14. George, D.L.: Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227, 3089–3113 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. George, D.L., LeVeque, R.J.: Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 24, 319–328 (2006)

    Google Scholar 

  16. Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39, 135–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gosse, L.: A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11, 339–365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Greenberg, J.M., LeRoux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gundlach, C., LeVeque, R.J.: Universality in the run-up of shock waves to the surface of a star. J. Fluid Mech., submitted. arXiv:1008.2834v1 [astro-ph.SR]

  20. Khouider, B., Majda, A.J.: A non-oscillatory balanced scheme for an idealized tropical climate model. Theor. Comput. Fluid Dyn. 19, 331–354 (2005)

    Article  MATH  Google Scholar 

  21. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  23. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  24. LeVeque, R.J., et al.: clawpack software. www.clawpack.org

  25. LeVeque, R.J., Pelanti, M.: A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172, 572–591 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Marche, F., Bonneton, P., Fabrie, P., Seguin, N.: Evaluation of well-balanced bore-capturing schemes for 2d wetting and drying processes. Int. J. Numer. Methods Fluids 53, 867–894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Noelle, S., Pankrantz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pelanti, M., Bouchut, F., Mangeney, A.: A Roe-type scheme for two-phase shallow granular flows over variable topography. Model. Math. Anal. Numer. 42, 851–885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pelanti, M., Bouchut, F., Mangeney, A., Vilotte, J.-P.: Numerical modeling of two-phase gravitational granular flows with bottom topography. In: Hyperbolic Problems: Theory, Numerics, Applications, Proc. 11th Intl. Conf. on Hyperbolic Problems, 2006, pp. 825–832. Springer, Berlin (2008)

    Chapter  Google Scholar 

  31. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. LeVeque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeVeque, R.J. A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms. J Sci Comput 48, 209–226 (2011). https://doi.org/10.1007/s10915-010-9411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9411-0

Keywords

Navigation