Skip to main content
Log in

Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate here the ability of a Green–Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green–Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171(3), 485–541 (2007)

    Article  MathSciNet  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. J. Comput. Phys. 25(6), 2050–2065 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Beji, S., Battjes, J.A.: Experimental investigation of wave propagation over a bar. Coast. Eng. 19, 151–162 (1993)

    Article  Google Scholar 

  4. Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30(5), 2587–2612 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonneton, P., Chazel, F., Lannes, D., Marche, F., Tissier, M.: A splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model (submitted)

  6. Carter, J.D., Cienfuegos, R.: Solitary and cnoidal wave solutions of the Serre equations and their stability. Phys. Fluids (2010, submitted)

  7. Chazel, F., Benoit, M., Ern, A., Piperno, S.: A double-layer Boussinesq-type model for highly nonlinear and dispersive waves. Proc. R. Soc. Lond. A 465, 2319–2346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cienfuegos, R., Barthelemy, E., Bonneton, P.: A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis. Int. J. Numer. Methods Fluids 56, 1217–1253 (2006)

    Article  MathSciNet  Google Scholar 

  9. Cienfuegos, R., Barthelemy, E., Bonneton, P.: A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: Boundary conditions and validations. Int. J. Numer. Methods Fluids 53, 1423–1455 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dingemans, M.W.: Comparison of computations with Boussinesq-like models and laboratory measurements. Report H-1684.12, 32, Delft Hydraulics (1994)

  11. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118, Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78(2), 237–246 (1976)

    Article  MATH  Google Scholar 

  13. Jiang, G., Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  15. Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 016601 (2009)

    Article  Google Scholar 

  16. Le Métayer, O., Gavrilyuk, S., Hank, S.: A numerical scheme for the Green–Naghdi model. J. Comput. Phys. 229(6), 2034–2045 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Noelle, S., Pankratz, N., Puppo, G., Natvig, J. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 47–499 (2006)

    Article  MathSciNet  Google Scholar 

  18. Nwogu, O.G.: An alternative form of the Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng. 119(6), 618–638 (1993)

    Article  Google Scholar 

  19. Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M.: Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117–134 (1987)

    Article  Google Scholar 

  20. Su, C.H., Gardner, C.S.: Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burgers equation. J. Math. Phys. 10(3), 536–539 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Woo, S.-B., Liu, P.L.-F.: A Petrov–Galerkin finite element model for one-dimensional fully nonlinear and weakly dispersive wave propagation. Int. J. Numer. Methods Eng. 37, 541–575 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazel, F., Lannes, D. & Marche, F. Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model. J Sci Comput 48, 105–116 (2011). https://doi.org/10.1007/s10915-010-9395-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9395-9

Keywords

Navigation