Skip to main content

LDG2: A Variant of the LDG Flux Formulation for the Spectral Volume Method

Abstract

The local discontinuous Galerkin (LDG) viscous flux formulation was originally developed by Cockburn and Shu for the discontinuous Galerkin setting and later extended to the spectral volume setting by Wang and his collaborators. Unlike the penalty formulations like the interior penalty and the BR2 schemes, the LDG formulation requires no length based penalizing terms and is compact. However, computational results using LDG are dependant of the orientation of the faces especially for unstructured and non uniform grids. This results in lower solution accuracy and stiffer stability constraints as shown by Kannan and Wang. In this paper, we develop a variant of the LDG, which not only retains its attractive features, but also vastly reduces its unsymmetrical nature. This variant (aptly named LDG2), displayed higher accuracy than the LDG approach and has a milder stability constraint than the original LDG formulation. In general, the 1D and the 2D numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.

This is a preview of subscription content, access via your institution.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  2. Barth, T.J., Frederickson, P.O.: High-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper No. 90-0013 (1990)

  3. Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Karniadakis, G.E., Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, pp. 197–208. Springer, Berlin (2000)

    Google Scholar 

  4. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion system. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MATH  Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  7. Delanaye, M., Liu, Y.: Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA Paper No. 99-3259-CP (1999)

  8. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231 (1987)

    MATH  Article  MathSciNet  Google Scholar 

  9. Jain, A., Tamma, K.K.: Elliptic heat conduction specialized applications involving high gradients: LDG finite element method—Part 1. J. Therm. Stress. 33(4), 335–342 (2010)

    Article  Google Scholar 

  10. Kannan, R.: An implicit LU-SGS spectral volume method for the moment models in device simulations: formulation in 1D and application to a p-multigrid algorithm. Int. J. Numer. Methods Biomed. Eng. (2009). doi:10.1002/cnm.1359. Published Online: 1 Feb 2010 (formerly Communications in numerical methods in engineering)

  11. Kannan, R.: An implicit LU-SGS spectral volume method for the moment models in device simulations II: accuracy studies and performance enhancements using the penalty and the BR2 formulations. Int. J. Numer. Methods Biomed. Eng. (submitted). (formerly Communications in numerical methods in engineering)

  12. Kannan, R., Wang, Z.J.: A study of viscous flux formulations for a p-multigrid spectral volume Navier stokes solver. J. Sci. Comput. 41(2), 165–199 (2009)

    Article  MathSciNet  Google Scholar 

  13. Liang, C., Kannan, R., Wang, Z.J.: A-p-multigrid spectral difference method with explicit and implicit smoothers on unstructured grids. Comput. Fluids 38(2), 254–265 (2009)

    Article  MathSciNet  Google Scholar 

  14. Liou, M.-S., Steffen, C.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  15. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys. 212, 454–472 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  16. Mavriplis, D.J., Jameson, A., Martinelli, L.: Multigrid solution of the Navier-Stokes equations on triangular meshes. AIAA paper 89-0120 (1989)

  17. Radespiel, R., Swanson, R.C.: An investigation of cell-centered and cell vertex multigrid schemes for Navier-Stokes equations. AIAA Paper No. 89-0543 (1989)

  18. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    MATH  Article  MathSciNet  Google Scholar 

  19. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  20. Sun, Y., Wang, Z.J.: Efficient implicit non-linear LU-SGS approach for compressible flow computation using high-order spectral difference method. Commun. Comput. Phys. 5(2–4), 760–778 (2009)

    MathSciNet  Google Scholar 

  21. Sun, Y., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  22. Van Leer, B.: Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361 (1974)

    Article  Google Scholar 

  23. Van Leer, B.: Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101 (1979)

    Article  Google Scholar 

  24. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  25. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation. J. Comput. Phys. 179, 665 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  26. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids III: extension to one-dimensional systems. J. Sci. Comput. 20, 137 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  27. Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations. J. Comput. Phys. 194, 716 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  28. Wang, Z.J., Liu, Y.: Extension of the spectral volume method to high-order boundary representation. J. Comput. Phys. 211, 154–178 (2006)

    MATH  Article  Google Scholar 

  29. Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kannan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kannan, R., Wang, Z.J. LDG2: A Variant of the LDG Flux Formulation for the Spectral Volume Method. J Sci Comput 46, 314–328 (2011). https://doi.org/10.1007/s10915-010-9391-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9391-0

Keywords

  • Spectral volume
  • LDG
  • LDG2
  • Penalty
  • BR2
  • High-order