Skip to main content
Log in

A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In many problems, one wishes to solve the Helmholtz equation in cylindrical or spherical coordinates which introduces variable coefficients within the differentiated terms. Fourth order accurate methods are desirable to reduce pollution and dispersion errors and so alleviate the points-per-wavelength constraint. However, the variable coefficients renders existing fourth order finite difference methods inapplicable. We develop a new compact scheme that is provably fourth order accurate even for these problems. The resulting system of finite difference equations is solved by a separation of variables technique based on the FFT. Moreover, in the r direction the unbounded domain is replaced by a finite domain, and an exact artificial boundary condition is specified as a closure. This global boundary condition fits naturally into the inversion of the linear system. We present numerical results that corroborate the fourth order convergence rate for several scattering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amos, D.E.: Algorithm 644, a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 12(3), 265–273 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amos, D.E.: Remark on algorithm 644. ACM Trans. Math. Softw. 16(4), 404 (1990)

    Article  MATH  Google Scholar 

  3. Amos, D.E.: A remark on algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 21(4), 388–393 (1995)

    Article  MATH  Google Scholar 

  4. Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42(3), 451–484 (2000) (electronic). Reprint of SIAM J. Numer. Anal. 34(6), 2392–2423 (1997) [MR1480387 (99b:65135)]

    MATH  MathSciNet  Google Scholar 

  5. Baruch, G., Fibich, G., Tsynkov, S.: A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media. J. Comput. Phys. 228, 3789–3815 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bayliss, A., Turkel, E.: Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 33(6), 707–725 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (eds.): Electromagnetic and Acoustic Scattering by Simple Shapes. A Summa Book. Hemisphere, New York (1987). Revised reprint of the 1969 edn.

    Google Scholar 

  9. Brandt, A., Livshits, I.: Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal. 6, 162–181 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Budaev, B.V., Bogy, D.B.: Novel solutions of the Helmholtz equation and their application to diffraction. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2080), 1005–1027 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caruthers, J.E., Steinhoff, J.S., Engels, R.C.: An optimal finite difference representation for a class of linear PDE’s with application to the Helmholtz equation. J. Comput. Acoust. 7(4), 245–252 (1999)

    Article  MathSciNet  Google Scholar 

  12. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deraemaeker, A., Babuška, I.M., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int. J. Numer. Methods Eng. 46, 471–499 (1999)

    Article  MATH  Google Scholar 

  14. Farhat, C., Harari, I., Franca, L.P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190(48), 6455–6479 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fibich, G., Tsynkov, S.V.: Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions. J. Comput. Phys. 210(1), 183–224 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. M2AN Math. Model. Numer. Anal. 43(2), 297–331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldstein, C.I.: The weak element method applied to Helmholtz type equations. Appl. Numer. Math. 2(3–5), 409–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time Dependent Problems and Difference Methods. Pure and Applied Mathematics. Wiley/Wiley-Interscience, New York (1995)

    MATH  Google Scholar 

  19. Harari, I.: A survey of finite element methods for time-harmonic acoustics. Comput. Methods Appl. Mech. Eng. 195(13–16), 1594–1607 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harari, I., Turkel, E.: Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119(2), 252–270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  22. Lončarić, J., Tsynkov, S.V.: Optimization of acoustic source strength in the problems of active noise control. SIAM J. Appl. Math. 63(4), 1141–1183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Melenk, J.M., Babuška, I.M.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  24. Monk, P.: The solution of time harmonic wave equations using complete families of elementary solutions. In: International Conference on Spectral and High Order Methods, ICOSAHOM 09, Book of Abstracts, Trondheim, Norway, June 22–26, 2009. http://svein.halvorsen.cc/icosahom/frog/public/program/conferenceprogram_overview.pdf (2009)

  25. Nabavi, M., Siddiqui, K., Dargahi, J.: A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. J. Sound Vib. 307, 972–982 (2007)

    Article  Google Scholar 

  26. Nehrbass, J.W., Jevtic, J.O., Lee, R.: Reducing the phase error for finite-difference methods without incresing the order. IEEE Trans. Antennas Propag. 46, 1194–1201 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Singer, I., Turkel, E.: Sixth-order accurate finite difference schemes for the Helmholtz equation. J. Comput. Acoust. 14(3), 339–351 (2006)

    Article  MathSciNet  Google Scholar 

  29. Strouboulis, I., Babuška, I.M., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181, 43–69 (2000)

    Article  MATH  Google Scholar 

  30. Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math. 203(1), 15–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Swarztrauber, P.N.: Vectorizing the FFTs. In: Rodrigue, G. (ed.) Parallel Computations, pp. 51–83. Academic Press, San Diego (1982)

    Google Scholar 

  32. Thompson, L.L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 199, 1315–1330 (2006)

    Article  Google Scholar 

  33. Tsukerman, I.: A class of difference schemes with flexible local approximation. J. Comput. Phys. 211(2), 659–699 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tsynkov, S.V.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27, 465–532 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Turkel, E.: Numerical difficulties solving time harmonic equations. In: Brandt, A., Bernholc, J., Binder, K. (eds.) Multiscale Computational Methods in Chemistry and Physics, pp. 319–337. IOS Press, Ohmsha (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tsynkov.

Additional information

Dedicated to the memory of our dear friend, David Gottlieb.

This work was partially supported by the United States—Israel Binational Science Foundation (BSF), grant number 2008094. Research of the first and second authors was also supported in part by the US Air Force, grant number FA9550-07-1-0170, and US NSF, grant number DMS-0509695.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britt, S., Tsynkov, S. & Turkel, E. A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates. J Sci Comput 45, 26–47 (2010). https://doi.org/10.1007/s10915-010-9348-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9348-3

Keywords

Navigation