Skip to main content
Log in

Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the stability and accuracy of adaptive finite element methods for the convection-dominated convection-diffusion-reaction problem in the two-dimension space. Through various numerical examples on a type of layer-adapted grids (Shishkin grids), we show that the mesh adaptivity driven by accuracy alone cannot stabilize the scheme in all cases. Furthermore the numerical approximation is sensitive to the symmetry of the grid in the region where the solution is smooth. On the basis of these two observations, we develop a multilevel-homotopic-adaptive finite element method (MHAFEM) by combining streamline diffusion finite element method, anisotropic mesh adaptation, and the homotopy of the diffusion coefficient. We use numerical experiments to demonstrate that MHAFEM can efficiently capture boundary or interior layers and produce accurate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R., Bürger, J., Fichtner, W., Smith, R.: Some upwinding techniques for finite element approximations of convection diffusion equations. Numer. Math. 58, 185–202 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bank, R.E., Smith, R.K.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34, 979–997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bänsch, E., Morin, P., Nochetto, R.H.: An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40(4), 1207–1229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Franca, L., Russo, A.: Further considerations on residual free bubbles for advection-diffusive equations. Comput. Methods Appl. Mech. Eng. 166, 25–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezzi, F., Franca, L.P., Hughes, T.J.R., Russo, A.: b= g. Comput. Methods Appl. Mech. Eng. 145, 329–339 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brezzi, F., Hughes, T.J.R., Marini, L.D., Russo, A., Süli, E.: A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36(4), 1933–1948 (1999)

    Google Scholar 

  10. Brezzi, F., Marini, D., Süli, E.: Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85, 31–47 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezzi, F., Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26(6), 1342–1355 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brooks, A., Hughes, T.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, L.: Mesh smoothing schemes based on optimal Delaunay triangulations. In: 13th International Meshing Roundtable, Williamsburg, VA, 2004, pp. 109–120. Sandia National Laboratories, Albuquerque (2004)

    Google Scholar 

  14. Chen, L.: Robust and accurate algorithms for solving anisotropic singularities. PhD thesis, Department of Mathematics, The Pennsylvania State University (2005)

  15. Chen, L., Sun, P., Xu, J.: Multilevel homotopic adaptive finite element methods for convection dominated problems. In: The Proceedings for 15th Conferences for Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 459–468. Springer, Berlin (2004)

    Chapter  Google Scholar 

  16. Chen, L., Sun, P., Xu, J.: Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p-norm. Math. Comput. 76(257), 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, L., Xu, J.: Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109(2), 167–191 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heinrich, J.C., Huyakorn, P.S., Zienkiewicz, O.C., Mitchell, A.R.: An ‘upwind’ finite element scheme for two-dimensional convective transport equation. Int. J. Numer. Methods Eng. 11, 131–143 (1977)

    Article  MATH  Google Scholar 

  19. Hemker, P.W.: A singularly perturbed model problem for numerical computation. J. Comput. Appl. Math. 76(1–2), 277–285 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Holmes, M.H.: Introduction to Perturbation Methods. Texts in Applied Mathematics, vol. 20. Springer, New York (1995)

    MATH  Google Scholar 

  21. Houston, P., Schwab, C., Suli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang, W.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1, 276–310 (2006)

    Google Scholar 

  23. Huang, W., Sun, W.: Variational mesh adaptation II: error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows. AMD, vol. 34, pp. 19–35. ASME, New York (1979)

    Google Scholar 

  25. John, V.: A numerical study of a posteriori error estimators for convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5–7), 757–781 (2000)

    Article  MATH  Google Scholar 

  26. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part I—a review. Comput. Methods Appl. Mech. Eng. 196(17–20), 2197–2215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part II—analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Eng. 197, 1997–2014 (2008)

    Article  MathSciNet  Google Scholar 

  28. Kang, T., Yu, D.: Some a posteriori error estimates of the finite-difference streamline-diffusion method for convection-dominated diffusion equations. Adv. Comput. Math. 15, 193–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170(2), 562–588 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, R., Tang, T., Zhang, P.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177(2), 365–393 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Linß, T.: Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem. IMA J. Numer. Anal. 20, 621–632 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Linß, T.: The necessity of Shishkin-decompositions. Appl. Math. Lett. 14, 891–896 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Linß, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–1105 (2003)

    Article  MATH  Google Scholar 

  34. Linß, T., Stynes, M.: Numerical methods on Shishkin meshes for linear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 190(28), 3527–3542 (2001)

    Article  MATH  Google Scholar 

  35. Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection-diffusion problems. Numer. Math. 87, 457–484 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15, 89–99 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  38. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Applied Mathematics and Mathematical Computation, vol. 12. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  39. Nooyen, R.R.P.V.: A Petrov-Galerkin mixed finite element method with exponential fitting. Numer. Methods Partial Differ. Equ. 11(5), 501–524 (1995)

    Article  MATH  Google Scholar 

  40. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24. Springer, Berlin (1996)

    MATH  Google Scholar 

  41. Roos, H.G.R.G.: A note on the conditioning of upwind schemes on Shishkin meshes. IMA J. Numer. Anal. 16, 529 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations. PhD thesis, Second doctoral thesis, Keldysh Institute, Moscow (1990) (in Russian)

  43. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sun, P., Russell, R.D., Xu, J.: A new adaptive local mesh refinement algorithm and its application on fourth order thin film flow problem. J. Comput. Phys. 224(2), 1021–1048 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Tobiska, L.: Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 196, 538–550 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xu, J., Zikatanov, L.: A monotone finite element scheme for convection diffusion equations. Math. Comput. 68, 1429–1446 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang, Z., Tang, T.: An adaptive mesh redistribution algorithm for convection-dominated problems. Commun. Pure Appl. Anal. 1(3), 341–357 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhang, Z.M.: Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comput. 72(243), 1147–1177 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, P., Chen, L. & Xu, J. Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems. J Sci Comput 43, 24–43 (2010). https://doi.org/10.1007/s10915-009-9337-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9337-6

Navigation