Skip to main content
Log in

An Efficient Data Structure and Accurate Scheme to Solve Front Propagation Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we are interested in some front propagation problems coming from control problems in d-dimensional spaces, with d≥2. As opposed to the usual level set method, we localize the front as a discontinuity of a characteristic function. The evolution of the front is computed by solving an Hamilton-Jacobi-Bellman equation with discontinuous data, discretized by means of the antidissipative Ultra Bee scheme.

We develop an efficient dynamic storage technique suitable for handling front evolutions in large dimension. Then we propose a fast algorithm, showing its relevance on several challenging tests in dimension d=2,3,4. We also compare our method with the techniques usually used in level set methods. Our approach leads to a computational cost as well as a memory allocation scaling as O(N nb ) in most situations, where N nb is the number of grid nodes around the front. Moreover, we show on several examples the accuracy of our approach when compared with level set methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R.: Numerical discretization of first-order Hamilton-Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49, 1339–1373 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R., Augoula, S.: High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197–229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Google Scholar 

  6. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15, 1713–1742 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bokanowski, O., Cristiani, E., Laurent-Varin, J., Zidani, H.: Hamilton-Jacobi-Bellman approach for the climbing problem for heavy launchers. Preprint (2009)

  8. Bokanowski, O., Forcadel, N., Zidani, H.: Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data. To appear in Math. Comput.

  9. Bokanowski, O., Martin, S., Munos, R., Zidani, H.: An anti-diffusive scheme for viability problems. Appl. Numer. Math. 56, 1135–1254 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bokanowski, O., Megdich, N., Zidani, H.: An adaptative antidissipative method for optimal control problems. Arima 5, 256–271 (2006)

    Google Scholar 

  11. Bokanowski, O., Megdich, N., Zidani, H.: Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data. Numer. Math. (2009). doi:10.1007/s00211-009-0271-1

    Google Scholar 

  12. Bokanowski, O., Zidani, H.: Anti-diffusive schemes for linear advection and application to Hamilton-Jacobi-Bellman equations. J. Sci. Comput. 30, 1–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43, 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Desprès, B., Lagoutière, F.: Un schéma non linéaire anti-dissipatif pour l’équation d’advection linéaire. A non-linear anti-diffusive scheme for the linear advection equation. C. R. Acad. Sci. Paris, Sér. I, Math. 328, 939–944 (1999)

    MATH  Google Scholar 

  15. Desprès, B., Lagoutière, F.: Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16, 479–524 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31, 257–272 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hartmann, D., Meinke, M., Schroeder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227, 6821–6845 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lagoutière, F.: A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction. C. R. Math. Acad. Sci. Paris 338, 549–554 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Lagoutière, F.: Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis, University of Paris VI, Paris, France (2000)

  21. Lin, C.-Y., Chung, Y.-C.: Efficient data compression methods for multidimensional sparse array operations based on the EKMR scheme. IEEE Trans. Comput. 52, 1640–1646 (2003)

    Article  Google Scholar 

  22. Megdich, N.: Méthodes anti-dissipatives pour les equations de Hamilton-Jacobi-Bellman. Ph.D. thesis, University of Paris VI, Paris, France (2008)

  23. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Automat. Contr. 50, 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  24. Osher, S.: A level set formulation for the solution of the Hamilton-Jacobi equations. SIAM J. Math. Anal. 24, 1145–1152 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Peng, D.P., Merriman, B., Osher, S., Zhao, H.K., Kang, M.J.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Robins, G.: Robs algorithm. Appl. Math. Comput. 189, 314–325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  30. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: High-order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., vol. 9, pp. 439–582. Springer, Berlin (1999)

    Google Scholar 

  31. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible 2-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bokanowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokanowski, O., Cristiani, E. & Zidani, H. An Efficient Data Structure and Accurate Scheme to Solve Front Propagation Problems. J Sci Comput 42, 251–273 (2010). https://doi.org/10.1007/s10915-009-9329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9329-6

Keywords

Navigation