Skip to main content

On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method

Abstract

We address the question of the rates of convergence of the p-version interior penalty discontinuous Galerkin method (p-IPDG) for second order elliptic problems with non-homogeneous Dirichlet boundary conditions. It is known that the p-IPDG method admits slightly suboptimal a-priori bounds with respect to the polynomial degree (in the Hilbertian Sobolev space setting). An example for which the suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and validated in practice through numerical experiments is presented. Moreover, the performance of p-IPDG on the related problem of p-approximation of corner singularities is assessed both theoretically and numerically, witnessing an almost doubling of the convergence rate of the p-IPDG method.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)

    MATH  Article  Google Scholar 

  2. 2.

    Babuska, I., Guo, B.: Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces I: Approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39(5), 1512–1538 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Babuška, I., Suri, M.: The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24(4), 750–776 (1987)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(257), 67–86 (1982)

    MATH  MathSciNet  Google Scholar 

  5. 5.

    Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, Newport, RI, 1999. Lecture Notes in Computer Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000)

    Google Scholar 

  6. 6.

    Georgoulis, E.H.: hp-version interior penalty discontinuous Galerkin finite element methods on anisotropic meshes. Int. J. Numer. Anal. Model. 3, 52–79 (2006)

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Georgoulis, E.H., Süli, E.: Optimal error estimates for the hp-version interior penalty discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25(1), 205–220 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. I. The error analysis of the p-version. Numer. Math. 49(6), 577–612 (1986)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002) (electronic)

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971). Collection of articles dedicated to Lothar Collatz on his sixtieth birthday

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001) (electronic)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Schwab, C.: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon/Oxford University Press, New York (1998)

    Google Scholar 

  13. 13.

    Stamm, B., Wihler, T.P.: hp-Optimal discontinuous Galerkin methods for linear elliptic problems. Technical report, EPFL/IACS report 07.2007 (2007)

  14. 14.

    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanuil H. Georgoulis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Georgoulis, E.H., Hall, E. & Melenk, J.M. On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method. J Sci Comput 42, 54 (2010). https://doi.org/10.1007/s10915-009-9315-z

Download citation

Keywords

  • Discontinuous Galerkin method
  • Interior penalty
  • A priori error estimation
  • p-version
  • Suboptimality