Bastian, P., Hackbusch, W., Wittum, G.: Additive and multiplicative multigrid: a comparison. Computing 60, 345–364 (1998)
MATH
Article
MathSciNet
Google Scholar
Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. Math. Comput. 47, 103–134 (1986)
MATH
Article
MathSciNet
Google Scholar
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)
MATH
Article
MathSciNet
Google Scholar
Carpentieri, B., Giraud, L., Gratton, S.: Additive and multiplicative two-level spectral preconditioning for general linear systems. SIAM J. Sci. Comput. 29, 1593–1612 (2007)
MATH
Article
MathSciNet
Google Scholar
Dryja, M.: An additive Schwarz algorithm for two- and three-dimensional finite element elliptic problems. In: Domain Decomposition Methods, pp. 168–172. SIAM, Philadelphia (1989)
Google Scholar
Dryja, M., Widlund, O.B.: Towards a unified theory of domain decomposition algorithms for elliptic problems. In: Third International Symposium on DDM for PDEs, pp. 3–21. SIAM, Philadelphia (1990)
Google Scholar
Dryja, M., Widlund, O.B.: Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Commun. Pure Appl. Math. 48, 121–155 (1995)
MATH
Article
MathSciNet
Google Scholar
Eiermann, M., Ernst, O.G., Schneider, O.: Analysis of acceleration strategies for restarted minimal residual methods. J. Comput. Appl. Math. 123, 261–292 (2000)
MATH
Article
MathSciNet
Google Scholar
Erlangga, Y.A., Nabben, R.: Multilevel projection-based nested Krylov iterations for boundary value problems. SIAM J. Sci. Comput. 30, 1572–1595 (2008)
Article
MathSciNet
Google Scholar
Faber, V., Manteuffel, T.: Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal. 21, 352–362 (1984)
MATH
Article
MathSciNet
Google Scholar
Frank, J., Vuik, C.: On the construction of deflation-based preconditioners. SIAM J. Sci. Comput. 23, 442–462 (2001)
MATH
Article
MathSciNet
Google Scholar
De Gersem, H., Hameyer, K.: A deflated iterative solver for magnetostatic finite element models with large differences in permeability. Eur. Phys. J. Appl. Phys. 13, 45–49 (2000)
Article
Google Scholar
Giraud, L., Ruiz, D., Touhami, A.: A comparative study of iterative solvers exploiting spectral information for SPD systems. SIAM J. Sci. Comput. 27, 1760–1786 (2006)
MATH
Article
MathSciNet
Google Scholar
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)
MATH
Google Scholar
Graham, I.G., Scheichl, R.: Robust domain decomposition algorithms for multiscale PDEs. Numer. Methods Partial Differ. Equ. 23, 859–878 (2007)
MATH
Article
MathSciNet
Google Scholar
Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)
Google Scholar
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)
MATH
MathSciNet
Google Scholar
Kaasschieter, E.F.: Preconditioned conjugate gradients for solving singular systems. J. Comput. Appl. Math. 24, 265–275 (1988)
MATH
Article
MathSciNet
Google Scholar
Kolotilina, L.Y.: Twofold deflation preconditioning of linear algebraic systems, I: theory. J. Math. Sci. 89, 1652–1689 (1998)
Article
MathSciNet
Google Scholar
MacLachlan, S.P., Tang, J.M., Vuik, C.: Fast and robust solvers for pressure correction in bubbly flow problems. J. Comput. Phys. 227, 9742–9761 (2008)
MATH
Article
MathSciNet
Google Scholar
Mandel, J.: Balancing domain decomposition. Commun. Appl. Numer. Methods 9, 233–241 (1993)
MATH
Article
MathSciNet
Google Scholar
Mandel, J.: Hybrid domain decomposition with unstructured subdomains. In: Proceedings of the Sixth International Symposium on DDM, Como, Italy, 1992. Contemp. Math., 157, pp. 103–112. AMS, Providence (1994)
Google Scholar
Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 216, 1387–1401 (1996)
MathSciNet
Google Scholar
Mansfield, L.: On the conjugate gradient solution of the Schur complement system obtained from domain decomposition. SIAM J. Numer. Anal. 27, 1612–1620 (1990)
MATH
Article
MathSciNet
Google Scholar
Mansfield, L.: Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel computers. SIAM J. Sci. Stat. Comput. 12, 1314–1323 (1991)
MATH
Article
MathSciNet
Google Scholar
Meijerink, J.A., Van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)
MATH
Article
Google Scholar
Morgan, R.B.: A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 16, 1154–1171 (1995)
MATH
Article
MathSciNet
Google Scholar
Nabben, R., Vuik, C.: A comparison of deflation and coarse grid correction applied to porous media flow. SIAM J. Numer. Anal. 42, 1631–1647 (2004)
MATH
Article
MathSciNet
Google Scholar
Nabben, R., Vuik, C.: A comparison of deflation and the balancing preconditioner. SIAM J. Sci. Comput. 27, 1742–1759 (2006)
MATH
Article
MathSciNet
Google Scholar
Nabben, R., Vuik, C.: A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners. Numer. Linear Algebra Appl. 15, 355–372 (2008)
Article
MathSciNet
Google Scholar
Nicolaides, R.A.: Deflation of Conjugate Gradients with applications to boundary value problems. SIAM J. Matrix Anal. Appl. 24, 355–365 (1987)
MATH
MathSciNet
Google Scholar
Padiy, A., Axelsson, O., Polman, B.: Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems. SIAM J. Matrix Anal. Appl. 22, 793–818 (2000)
MATH
Article
MathSciNet
Google Scholar
Pavarino, L.F., Widlund, O.B.: Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55, 302–335 (2002)
MATH
Article
MathSciNet
Google Scholar
Saad, Y., Yeung, M., Erhel, J., Guyomarc’h, F.: A deflated version of the conjugate gradient algorithm. SIAM J. Sci. Comput. 21, 1909–1926 (2000)
MATH
Article
MathSciNet
Google Scholar
Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14, 1–59 (2007)
Article
MathSciNet
Google Scholar
Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition. Cambridge University Press, Cambridge (1996)
MATH
Google Scholar
Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Theoretical and numerical comparison of various projection methods derived from deflation, domain decomposition and multigrid methods. Delft University of Technology, DIAM Report 07-04, ISSN 1389-6520 (2007)
Tang, J.M., MacLachlan, S.P., Nabben, R., Vuik, C.: A comparison of two-level preconditioners based on multigrid and deflation. Submitted
Tang, J.M., Vuik, C.: On deflation and singular symmetric positive semi-definite matrices. J. Comput. Appl. Math. 206, 603–614 (2007)
MATH
Article
MathSciNet
Google Scholar
Tang, J.M., Vuik, C.: Efficient deflation methods applied to 3-D bubbly flow problems. Electron. Trans. Numer. Anal. 26, 330–349 (2007)
MathSciNet
Google Scholar
Tang, J.M., Vuik, C.: New variants of deflation techniques for bubbly flow problems. J. Numer. Anal. Ind. Appl. Math. 2, 227–249 (2007)
MATH
MathSciNet
Google Scholar
Tang, J.M., Vuik, C.: Fast deflation methods with applications to two-phase flows. Int. J. Mult. Comput. Eng. 6, 13–24 (2008)
Article
Google Scholar
Toselli, A., Widlund, O.B.: Domain Decomposition: Algorithms and Theory. Comput. Math., vol. 34. Springer, Berlin (2005)
MATH
Google Scholar
Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2001)
MATH
Google Scholar
Vuik, C., Segal, A., Meijerink, J.A.: An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 152, 385–403 (1999)
MATH
Article
Google Scholar
Vuik, C., Nabben, R., Tang, J.M.: Deflation acceleration for domain decomposition preconditioners. In: Proceedings of the 8th European Multigrid Conference on Multigrid, Multilevel and Multiscale Methods, The Hague, The Netherlands, September 27–30, 2005
Wesseling, P.: An Introduction to Multigrid Methods. Wiley, New York (1992). Corrected reprint: Edwards, Philadelphia (2004)
MATH
Google Scholar
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)
MATH
Article
MathSciNet
Google Scholar