Skip to main content
Log in

Nonconforming Maxwell Eigensolvers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Three Maxwell eigensolvers are discussed in this paper. Two of them use classical nonconforming finite element approximations, and the other is an interior penalty type discontinuous Galerkin method. A main feature of these solvers is that they are based on the formulation of the Maxwell eigenproblem on the space H 0(curl;Ω)∩H(div0;Ω). These solvers are free of spurious eigenmodes and they do not require choosing penalty parameters. Furthermore, they satisfy optimal order error estimates on properly graded meshes, and their analysis is greatly simplified by the underlying compact embedding of H 0(curl;Ω)∩H(div0;Ω) in L 2(Ω). The performance and the relative merits of these eigensolvers are demonstrated through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Assous, F., Ciarlet, P. Jr., Sonnendrücker, E.: Resolution of the Maxwell equation in a domain with reentrant corners. Math. Model. Numer. Anal. 32, 359–389 (1998)

    MATH  Google Scholar 

  3. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  4. Boffi, D.: Fortin operators and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boffi, D., Kikuchi, F., Schöberl, J.: Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16, 265–273 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner, S.C., Cui, J., Li, F., Sung, L.-Y.: A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem. Numer. Math. 109, 509–533 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free nonconforming finite element method for the reduced time-harmonic Maxwell equations. Math. Comput. 76, 573–595 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)

    Article  MathSciNet  Google Scholar 

  10. Brenner, S.C., Li, F., Sung, L.-Y.: A nonconforming penalty method for two dimensional curl-curl problems. Math. Models Methods Appl. Sci. (to appear)

  11. Brenner, S.C., Sung, L.-Y.: A quadratic nonconforming vector finite element for H(curl;Ω)∩H(div;Ω). Appl. Math. Lett. doi:10.1016/j.aml.2008.07.017

  12. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplical meshes. J. Comput. Appl. Math. 204, 317–333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Caorsi, S., Fernandes, P., Raffetto, M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nédélec-type elements. Math. Model. Numer. Anal. 35, 331–358 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, San Diego (1983)

    Google Scholar 

  17. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22, 243–258 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7, 33–75 (1973)

    MathSciNet  Google Scholar 

  22. Dunford, N., Schwartz, J.T.: Linear Operators II. Wiley-Interscience, New York (1963)

    MATH  Google Scholar 

  23. Hesthaven, J.S., Warburton, T.: High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A 362, 493–524 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966)

    Google Scholar 

  25. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, London (2003)

    Book  MATH  Google Scholar 

  26. Levillain, V.: Eigenvalue approximation by a mixed method for resonant inhomogeneous cavities with metallic boundaries. Math. Comput. 58, 11–20 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Warburton, T., Embree, M.: On the role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Mech. Appl. Eng. 195, 3205–3223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Li.

Additional information

The work of S.C. Brenner was supported in part by the National Science Foundation under Grant No. DMS-07-38028, and Grant No. DMS-07-13835.

The work of F. Li was supported in part by the National Science Foundation under Grant No. DMS-06-52481, and by the Alfred P. Sloan Foundation as an Alfred P. Sloan Research Fellow.

The work of L. Sung was supported in part by the National Science Foundation under Grant No. DMS-07-13835.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, S.C., Li, F. & Sung, Ly. Nonconforming Maxwell Eigensolvers. J Sci Comput 40, 51–85 (2009). https://doi.org/10.1007/s10915-008-9266-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9266-9

Keywords

Navigation