Abstract
We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element post-processing procedure is used to provide globally divergence-free velocity approximations. For small data, we prove the existence and uniqueness of discrete solutions and carry out an error analysis of the method. A series of numerical results are presented that validate our theoretical findings.
Similar content being viewed by others
References
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)
Brenner, S.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)
Cockburn, B., Kanschat, G., Schötzau, D.: Local discontinuous Galerkin methods for the Oseen equations. Math. Comput. 73, 569–593 (2004)
Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin methods for linear incompressible flow: A review. Comput. Fluids 34, 491–506 (2005)
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)
Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)
Gopalakrishnan, J., Kanschat, G.: Application of unified DG analysis to preconditioning DG methods. In: Bathe, K.J. (ed.) Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 1943–1945. Cambridge, MA, USA. Elsevier, Amsterdam (2003)
Kanschat, G., Schötzau, D.: Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57, 1093–1113 (2008)
Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)
Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1994)
Schötzau, D., Schwab, C., Toselli, A.: Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13, 1413–1436 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
B. Cockburn was supported in part by the National Science Foundation (Grant DMS-0712955) and by the University of Minnesota Supercomputing Institute.
G. Kanschat was supported in part by NSF through award no. DMS-0713829 and by award no. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
D. Schötzau was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Rights and permissions
About this article
Cite this article
Cockburn, B., Kanschat, G. & Schötzau, D. An Equal-Order DG Method for the Incompressible Navier-Stokes Equations. J Sci Comput 40, 188–210 (2009). https://doi.org/10.1007/s10915-008-9261-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-008-9261-1