Skip to main content
Log in

An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element post-processing procedure is used to provide globally divergence-free velocity approximations. For small data, we prove the existence and uniqueness of discrete solutions and carry out an error analysis of the method. A series of numerical results are presented that validate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  5. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Kanschat, G., Schötzau, D.: Local discontinuous Galerkin methods for the Oseen equations. Math. Comput. 73, 569–593 (2004)

    MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin methods for linear incompressible flow: A review. Comput. Fluids 34, 491–506 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    MATH  Google Scholar 

  9. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gopalakrishnan, J., Kanschat, G.: Application of unified DG analysis to preconditioning DG methods. In: Bathe, K.J. (ed.) Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 1943–1945. Cambridge, MA, USA. Elsevier, Amsterdam (2003)

    Google Scholar 

  11. Kanschat, G., Schötzau, D.: Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57, 1093–1113 (2008)

    Article  MATH  Google Scholar 

  12. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)

    Google Scholar 

  14. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1994)

    MATH  Google Scholar 

  15. Schötzau, D., Schwab, C., Toselli, A.: Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13, 1413–1436 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Schötzau.

Additional information

B. Cockburn was supported in part by the National Science Foundation (Grant DMS-0712955) and by the University of Minnesota Supercomputing Institute.

G. Kanschat was supported in part by NSF through award no. DMS-0713829 and by award no. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

D. Schötzau was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockburn, B., Kanschat, G. & Schötzau, D. An Equal-Order DG Method for the Incompressible Navier-Stokes Equations. J Sci Comput 40, 188–210 (2009). https://doi.org/10.1007/s10915-008-9261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9261-1

Keywords

Navigation