Skip to main content
Log in

The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider discontinuous Galerkin (DG) approximations of the Maxwell eigenproblem on meshes with hanging nodes. It is known that while standard DG methods provide spurious-free and accurate approximations on the so-called k-irregular meshes, they may generate spurious solutions on general irregular meshes. In this paper we present a mortar-type method to cure this problem in the two-dimensional case. More precisely, we introduce a projection based penalization at non-conforming interfaces and prove that the obtained DG methods are spectrally correct. The theoretical results are validated in a series of numerical experiments on both convex and non convex problem domains, and with both regular and discontinuous material coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Abdallah, A., Ben Belgacem, F., Maday, Y., Rapetti, F.: Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Models Methods Appl. Sci. 14(11), 1635–1656 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Belgacem, F., Buffa, A., Maday, Y.: The mortar finite element method for 3D Maxwell equations: first results. SIAM J. Numer. Anal. 39(3), 880–901 (2001). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: The mortar elements method. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Pitman, London (1994)

    Google Scholar 

  5. Buffa, A., Christiansen, S.H.: A dual finite element complex on the barycentric refinement. Math. Comput. 76(260), 1743–1769 (2007). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204(2), 317–333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. Modél. Math. Anal. Numér. 33, 627–649 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions. http://perso.univ-rennes1.fr/monique.dauge/benchmax.html

  11. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation Part 1. The problem of convergence. RAIRO. Modél. Math. Anal. Numér. 12, 97–112 (1978)

    MATH  MathSciNet  Google Scholar 

  12. Dunford, N., Schwartz, J.T.: Spectral Theory: Self Adjoint Operators in Hilbert Space. Interscience, New York (1963)

    MATH  Google Scholar 

  13. Heinrich, B., Pietsch, K.: Nitsche type mortaring of some elliptic problem with corner singularities. Computing 68, 217–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Math., vol. 54. Springer, New York (2008)

    MATH  Google Scholar 

  15. Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966)

    Google Scholar 

  17. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Univ. Press, London (2003)

    Book  MATH  Google Scholar 

  18. Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195, 3205–3223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Perugia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffa, A., Perugia, I. & Warburton, T. The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem. J Sci Comput 40, 86–114 (2009). https://doi.org/10.1007/s10915-008-9238-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9238-0

Keywords

Navigation