Skip to main content
Log in

A Priori Error Estimates for Optimal Control Problems Governed by Transient Advection-Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate a characteristic finite element approximation of quadratic optimal control problems governed by linear advection-dominated diffusion equations, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by piecewise constant functions. We derive some a priori error estimates for both the control and state approximations. It is proved that these approximations have convergence order \(\mathcal{O}(h_{U}+h+k)\) , where h U and h are the spatial mesh-sizes for the control and state discretization, respectively, and k is the time increment. Numerical experiments are presented, which verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W., Mackenroth, U.: Convergence of finite element approximation to state constraint convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002)

    MATH  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Google Scholar 

  5. Douglas, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer. 13, 313–328 (1979)

    MATH  MathSciNet  Google Scholar 

  8. Houston, P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math. Comp. 70, 77–106 (2000)

    Article  Google Scholar 

  9. Lefschetz, S.: Differential Equations: Geometric Theorey. Dover, New York (1977)

    Google Scholar 

  10. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite elememt approximation of elliptic optimal control. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  12. Liu, W.B., Tiba, D.: Error estimates for the finite element approximation of nonlinear optimal control problems. J. Numer. Func. Optim. 22, 953–972 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, W.B., Yan, N.N.: A posteriori error estimates for distributed convex optimal control problems. Advance. Comput. Math. 15, 285–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, W.B., Yan, N.N.: A posteriori error estimates for control problems governed by stockes equations. SIAM J. Numer. Anal. 40, 1850–1869 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, W.B., Yan, N.N.: A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl. Numer. Math. 47, 173–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theorey, Algorithms and Applications. Dekker, New York (1994)

    Google Scholar 

  18. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)

    MATH  Google Scholar 

  19. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscibe displacement in porous media. SIAM J. Numer. Anal. 22, 971–1013 (1985)

    Article  Google Scholar 

  21. Süli, E.: Convergence and nonlinear stability of the Lagrang-Galerkin method for the Navier-stokes equation. Numer. Math. 53, 459–483 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer, Berlin (1997)

    MATH  Google Scholar 

  23. Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyvaskyla Press, Finland (1995)

    Google Scholar 

  24. Wheeler, M.F.: A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Additional information

This research was supported by the National Basic Research Program of China (No. 2007CB814906) and the National Natural Science Foundation of China (No. 10771124).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Rui, H. A Priori Error Estimates for Optimal Control Problems Governed by Transient Advection-Diffusion Equations. J Sci Comput 38, 290–315 (2009). https://doi.org/10.1007/s10915-008-9224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9224-6

Keywords

Navigation