Skip to main content
Log in

Level Set Equations on Surfaces via the Closest Point Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Level set methods have been used in a great number of applications in ℝ2 and ℝ3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [2008]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertalmío, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheng, L.-T., Tsai, R.: Redistancing by flow of the time dependent Eikonal equation (2008). Under review

  3. Cheng, L.-T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29(3), 321–352 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Merriman, B., Ruuth, S.J.: Diffusion generated motion of curves on surfaces. J. Comput. Phys. 225(2), 2267–2282 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Merriman, B., Ruuth, S.J.: Embedding methods for the numerical solution of PDEs on manifolds. In preparation

  13. Mitchell, I.: A toolbox of level set methods. Technical Report TR-2004-09, University of British Columbia Department of Computer Science, July 2004. http://www.cs.ubc.ca/~mitchell/ToolboxLS/Papers/Toolbox/toolboxLS-1.0.pdf

  14. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  15. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008)

    Article  MATH  Google Scholar 

  19. Saboret, L., Attene, M., Alliez, P.: “Laurent’s Hand”, the AIM@SHAPE shape repository (2007). http://shapes.aimatshape.net

  20. Sebastian, K., Shu, C.-W.: Multidomain WENO finite difference method with interpolation at subdomain interfaces. J. Sci. Comput. 19(1–3), 405–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics, vol. 3, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report NASA CR-97-206253 ICASE Report No. 97-65, Institute for Computer Applications in Science and Engineering, November 1997

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wikipedia contributors: Klein bottle. Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Klein_bottle&oldid=133679151 (2007). Accessed 29 May 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Ruuth.

Additional information

The work of C.B. Macdonald was partially supported by a grant from NSERC Canada and a scholarship from the Pacific Institute for the Mathematical Sciences (PIMS).

The work of S.J. Ruuth was partially supported by a grant from NSERC Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, C.B., Ruuth, S.J. Level Set Equations on Surfaces via the Closest Point Method. J Sci Comput 35, 219–240 (2008). https://doi.org/10.1007/s10915-008-9196-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9196-6

Keywords

Navigation