Skip to main content
Log in

Numerical Simulation of Fluid-Structure Interaction Using Modified Ghost Fluid Method and Naviers Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we deal with the 1D compressible fluid coupled with elastic solid in an Eulerian-Lagrangian system. To facilitate the analysis, the Naviers equation for elastic solid is cast into a 2×2 system similar to the Euler equation but in Lagrangian coordinate. The modified Ghost Fluid Method is employed to treat the fluid-elastic solid coupling, where an Eulerian-Lagrangian Riemann problem is defined and a nonlinear characteristic from the fluid and a Riemann invariant from the solid are used to predict and define the ghost fluid states. Theoretical analysis shows that the present approach is accurate in the sense of approximating the solution of the Riemann problem at the interface. Numerical validation of this approach is also accomplished by extensive comparison to 1D problems (both water-solid and gas-solid) with their respective analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karni, S.: Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cocchi, J.-P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137, 265–298 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: a new methodology with test applications to 1D gas-gas and gas-water cases. Comput. Fluids 30(3), 291–314 (2001)

    Article  MATH  Google Scholar 

  6. Glimm, J., Xia, L., Liu, Y., Zhao, N.: Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98, 14198–14201 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    Article  MATH  Google Scholar 

  8. Fedkiw, R.P., Aslam, T., Xu, S.: The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154, 393–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001)

    Article  MATH  Google Scholar 

  10. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  MATH  Google Scholar 

  11. Aslam, T.D.: A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: systems of equations. J. Sci. Comput. 19, 37–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, C.W., Liu, T.G., Khoo, B.C.: A real-ghost fluid method for the simulation of multi-medium compressible flow. SIAM Sci. Comput. 28, 278–302 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  14. Tang, H.S., Sotiropoulos, F.: A second-order Godunov method for wave problems in coupled solid-water-gas systems. J. Comput. Phys. 151, 790–815 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Heys, J.J., Manteuffel, T.A., McCormick, S.F., Ruge, J.W.: First-order system least squares (FOSLS) for coupled fluid-elastic problems. J. Comput. Phys. 195, 560–575 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Udaykumar, H.S., Tran, L., Belk, D.M., Vanden, K.J.: An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces. J. Comput. Phys. 186, 136–177 (2003)

    Article  MATH  Google Scholar 

  17. Souli, M., Mahmadi, K., Aquelet, N.: ALE and fluid structure interface. Mater. Sci. Forum 465–466, 143–149 (2004)

    Article  Google Scholar 

  18. Aivazis, M., Goddard, W.A., Meiron, D., Ortiz, M., Pool, J., Shepherd, J.: A virtual, test facility for simulating the dynamic response of materials. Comput. Sci. Eng. 2, 42–53 (2000)

    Article  Google Scholar 

  19. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost fluid method. J. Comput. Phys. 175, 200–224 (2002)

    Article  MATH  Google Scholar 

  20. Arienti, M., Hung, P., Morano, E., Shepherd, J.: A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003)

    Article  MATH  Google Scholar 

  21. Liu, T.G., Khoo, B.C., Wang, C.W.: The Ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, T.G., Khoo, B.C., Xie, W.F.: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation. Commun. Comput. Phys. 1(5), 898–919 (2006)

    Google Scholar 

  23. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, New York (1997)

    MATH  Google Scholar 

  24. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chung, T.J.: Applied Continuum Mechanics. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  26. Lin, X.: Numerical Computation of Stress Waves in Solid. Akademie, Berlin (1997)

    Google Scholar 

  27. Liu, T.G., Xie, W.F., Khoo, B.C.: The modified Ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state. SIAM J. Sci. Comput. (2007, in press)

  28. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, T.G., Xie, W.F., Khoo, B.C.: Ghost fluid method applied to compressible multi-phase flows. Mod. Phys. Lett. B 19, 1475–1478 (2005)

    Article  MATH  Google Scholar 

  30. Liu, T.G., Khoo, B.C.: The accuracy of the modified ghost fluid method for gas-gas Riemann problem. Appl. Numer. Math. 57, 721–733 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Davis, J.R.: Concise Metals Engineering Data Book. ASM International (1997)

  33. Tang, H.S., Huang, D.: A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones. J. Comput. Phys. 128, 301–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Xie, W.F., Liu, T.G., Khoo, B.C.: Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt’s model. Comput. Fluids 35, 1177–1192 (2006)

    Article  Google Scholar 

  35. Liu, T.G., Khoo, B.C., Xie, W.F.: Isentropic one-fluid modelling of unsteady cavitating flow. J. Comput. Phys. 201, 80–108 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Liu.

Additional information

T.G. Liu’s current address: Department of Mathematics, Beijing University of Aeronautics and Astronautics, Beijing 100083. email: liutg@buaa.edu.cn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T.G., Ho, J.Y., Khoo, B.C. et al. Numerical Simulation of Fluid-Structure Interaction Using Modified Ghost Fluid Method and Naviers Equations. J Sci Comput 36, 45–68 (2008). https://doi.org/10.1007/s10915-007-9176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9176-2

Keywords

Navigation