Journal of Scientific Computing

, Volume 35, Issue 1, pp 1–23 | Cite as

Extracting Grain Boundaries and Macroscopic Deformations from Images on Atomic Scale

  • Benjamin BerkelsEmail author
  • Andreas Rätz
  • Martin Rumpf
  • Axel Voigt


Nowadays image acquisition in materials science allows the resolution of grains at atomic scale. Grains are material regions with different lattice orientation which are frequently in addition elastically stressed. At the same time, new microscopic simulation tools allow to study the dynamics of such grain structures. Single atoms are resolved experimentally as well as in simulation results on the data microscale, whereas lattice orientation and elastic deformation describe corresponding physical structures mesoscopically. A qualitative study of experimental images and simulation results and the comparison of simulation and experiment requires the robust and reliable extraction of mesoscopic properties from the microscopic image data. Based on a Mumford–Shah type functional, grain boundaries are described as free discontinuity sets at which the orientation parameter for the lattice jumps. The lattice structure itself is encoded in a suitable integrand depending on a local lattice orientation and one global elastic displacement. For each grain a lattice orientation and an elastic displacement function are considered as unknowns implicitly described by the image microstructure. In addition the approach incorporates solid–liquid interfaces. The resulting Mumford–Shah functional is approximated with a level set active contour model following the approach by Chan and Vese. The implementation is based on a finite element discretization in space and a step size controlled, regularized gradient descent algorithm.


Image segmentation Elastic lattice deformation Grain boundary extraction Phase field crystal model Transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aujol, J.-F., Aubert, G., Blanc-Feáaud, L.: Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process. 12(12), 1634–1641 (2003) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase field crystal (PFC) model. Phil. Mag. Lett. (2007, accepted) Google Scholar
  4. 4.
    Aujol, J.-F., Chan, T.F.: Combining geometrical and textured information to perform image classification. J. Vis. Commun. Image Represent. 17(5), 1004–1023 (2006) CrossRefGoogle Scholar
  5. 5.
    Berkels, B., Rätz, A., Rumpf, R., Voigt, A.: Identification of grain boundary contours at atomic scale. In: Proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision, pp. 765–776. Springer, Berlin (2007) Google Scholar
  6. 6.
    Berthod, M., Kato, Z., Yu, S., Zerubia, J.B.: Bayesian image classification using Markov random fields. Image Vis. Comput. 14(4), 285–295 (1996) CrossRefGoogle Scholar
  7. 7.
    Bouman, C., Shapiro, M.: Multiscale random field model for bayesian image segmentation. IEEE Trans. Image Process. 3(2), 162–177 (1994) CrossRefGoogle Scholar
  8. 8.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001) zbMATHCrossRefGoogle Scholar
  10. 10.
    Cremers, D., Schnörr, C.: Statistical shape knowledge in variational motion segmentation. Image Vis. Comput. 21(1), 77–86 (2003) CrossRefGoogle Scholar
  11. 11.
    Doretto, G., Cremers, D., Favaro, P., Soatto, S.: Dynamic texture segmentation. In: Triggs, B., Zisserman, A. (eds.) IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1236–1242. Nice, October 2003 Google Scholar
  12. 12.
    Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 70(5), 051605 (2004) Google Scholar
  14. 14.
    Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. Int. J. Comput. Vis. 63(1), 5–19 (2005) CrossRefGoogle Scholar
  15. 15.
    King, W.E., Campbell, G.H., Foiles, S.M., Cohen, D., Hanson, K.M.: Quantitative HREM observation of the \({\Sigma}11(113)/[\bar{1}00]\) grain-boundary structure in aluminium and comparison with atomistic simulation. J. Microsc. 190(1-2), 131–143 (1998) CrossRefGoogle Scholar
  16. 16.
    Kosmol, P.: Optimierung und Approximation. de Gruyter, Berlin (1991) zbMATHGoogle Scholar
  17. 17.
    Lakkis, O., Nochetto, R.H.: A posteriori error analysis for the mean curvature flow of graphs. SIAM J. Numer. Anal. 42(5), 1875–1898 (2004) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lakshmanan, S., Derin, H.: Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 799–813 (1989) CrossRefGoogle Scholar
  19. 19.
    Manjunath, B.S., Chellappa, R.: Unsupervised texture segmentation using Markov random field models. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 478–482 (1991) CrossRefGoogle Scholar
  20. 20.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, Boston (2001) zbMATHGoogle Scholar
  21. 21.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002) Google Scholar
  23. 23.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005) CrossRefGoogle Scholar
  24. 24.
    Sandberg, B., Chan, T., Vese, L.: A level-set and Gabor-based active contour algorithm for segmenting textured images. Technical Report 02-39, UCLA CAM Reports, 2002 Google Scholar
  25. 25.
    Schryvers, D., et al.: Measuring strain fields and concentration gradients around Ni4Ti3 precipitates. Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 438, 485–488 (2006) (Special Issue) Google Scholar
  26. 26.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  27. 27.
    Sikolowski, J., Zolésio, J.-P.: Introduction to shape optimization. In: Shape Sensitivity Analysis. Springer, Berlin (1992) Google Scholar
  28. 28.
    Singh, Y.: Density-functional theory of freezing and properties of the ordered phase. Phys. Rep. 207(6), 351–444 (1991) CrossRefGoogle Scholar
  29. 29.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4(11), 1549–1560 (1995) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vese, L., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002) zbMATHCrossRefGoogle Scholar
  31. 31.
    Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Benjamin Berkels
    • 1
    Email author
  • Andreas Rätz
    • 2
  • Martin Rumpf
    • 1
  • Axel Voigt
    • 3
  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany
  2. 2.Crystal Growth GroupResearch Center CaesarBonnGermany
  3. 3.Institut für Wissenschaftliches RechnenTechnische Universität DresdenDresdenGermany

Personalised recommendations