Skip to main content
Log in

Two-Dimensional Extension of the Reservoir Technique for Some Linear Advection Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper we present an extension of the reservoir technique (see, [Alouges et al., Submitted; Alouges et al.(2002a), In: Finite volumes for complex applications, III, pp. 247–254, Marseille; Alouges et al.(2002b), C. R. Math. Acad. Sci. Paris, 335(7), 627–632.]) for two-dimensional advection equations with non-constant velocities. The purpose of this work is to make decrease the numerical diffusion of finite volume schemes, correcting the numerical directions of propagation, using a so-called corrector vector combined with the reservoirs. We then introduce an object called velocities rose in order to minimize the algorithmic complexity of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F., De Vuyst, F., Le Coq, G., and Lorin, E. The reservoir technique: a way to make godunov-type schemes zero or very low-diffuse. Preprint CMLA 2005-16 (In revision).

  2. Alouges, F., De Vuyst, F., Le Coq, G., and Lorin, E. (2002). The reservoir scheme for systems of conservation laws. In Finite Volumes for Complex Applications, III (Porquerolles, 2002), pp. 247–254 (electronic). Laboratory Analytic Topology Probablity CNRS, Marseille.

  3. Alouges F., De Vuyst F., Le Coq G., Lorin E. (2002b). Un procédé de réduction de la diffusion numérique des schémas à différence de flux d’ordre un pour les systèmes hyperboliques non linéaires. C. R. Math. Acad. Sci. Paris, 335(7):627–632

    MATH  MathSciNet  Google Scholar 

  4. Alouges, Le Coq, F. G., and Lorin, E. (2005). Multidimensional extension of the reservoir technique. Preprint CMLA (ENS de Cachan).

  5. Bouchut F. (2004). An antidiffusive entropy scheme for monotone scalar conservation laws. J. Sci. Comput. 21(1):1–30

    Article  MATH  MathSciNet  Google Scholar 

  6. Billett S.J., Toro E.F. (1997). On WAF-type schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 130(1):1–24

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn B. (2003). Discontinuous Galerkin methods. ZAMM Z. Angew. Math. Mech. 83(11):731–754

    Article  MATH  MathSciNet  Google Scholar 

  8. DiPerna R.J., Lions P.-L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3):511–547

    Article  MATH  MathSciNet  Google Scholar 

  9. Després B., Lagoutière F. (1999). Un schéma non linéaire anti-dissipatif pour l’équation d’advection linéaire. C. R. Acad. Sci. Paris Sér. I Math. 328(10):939–944

    MATH  Google Scholar 

  10. Després B., Lagoutière F. (2002). Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16(4):479–524

    Article  Google Scholar 

  11. de Sousa F.S., Mangiavacchi N., Nonato L.G., Castelo A., Tomé M.F., Ferreira V.G., Cuminato J.A., McKee S. (2004). A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces. J. Comput. Phys. 198(2):469–499

    Article  MATH  MathSciNet  Google Scholar 

  12. Eymard, R., Gallouët, T., and Herbin, R. (2000). Finite volume methods. In Handbook of Numerical Analysis, Vol. VII, Handb. Numerical Analysis, VII. North-Holland, Amsterdam, pp. 713–1020.

  13. Ghidaglia J.-M., Kumbaro A., Le Coq G. (1996). Une méthode “volumes finis” à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sci. Paris Sér. I Math. 322(10):981–988

    MATH  MathSciNet  Google Scholar 

  14. Godlewski E., Raviart P.-A. (1996). Numerical Approximation of Hyperbolic Systems of Conservation laws, Applied Mathematical Sciences Vol 118. Springer-Verlag, New York

    Google Scholar 

  15. Harten, A. (1987). Preliminary results on the extension of ENO schemes to two-dimensional problems. In Nonlinear hyperbolic problems (St. Etienne, 1986) Lecture Notes in Mathematics, Vol. 1270, Springer, Berlin, pp. 23–40.

  16. Labbé, S., and Lorin, E. On the reservoir technique convergence. Preprint CRM-3222.

  17. Roe P.L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2):357–372

    Article  MATH  MathSciNet  Google Scholar 

  18. Shu, C. -W. (1999). High-order ENO and WENO schemes for computational fluid dynamics. In High-order methods for computational physics, Lecture Notes Computer Science Engineering, Vol. 9, Springer, Berlin, pp. 439–582.

  19. Xu Z., Shu C.-W. (2005). Anti-diffusive flux corrections for high-order finite WENO schemes. J. Comput. Phys. 205(2):458–485

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Lorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alouges, F., Le Coq, G. & Lorin, E. Two-Dimensional Extension of the Reservoir Technique for Some Linear Advection Systems. J Sci Comput 31, 419–458 (2007). https://doi.org/10.1007/s10915-006-9115-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9115-7

Keywords

Navigation