Skip to main content
Log in

Reconstruction of Piecewise Smooth Functions from Non-uniform Grid Point Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Spectral series expansions of piecewise smooth functions are known to yield poor results, with spurious oscillations forming near the jump discontinuities and reduced convergence throughout the interval of approximation. The spectral reprojection method, most notably the Gegenbauer reconstruction method, can restore exponential convergence to piecewise smooth function approximations from their (pseudo-)spectral coefficients. Difficulties may arise due to numerical robustness and ill-conditioning of the reprojection basis polynomials, however. This paper considers non-classical orthogonal polynomials as reprojection bases for a general order (finite or spectral) reconstruction of piecewise smooth functions. Furthermore, when the given data are discrete grid point values, the reprojection polynomials are constructed to be orthogonal in the discrete sense, rather than by the usual continuous inner product. No calculation of optimal quadrature points is therefore needed. This adaptation suggests a method to approximate piecewise smooth functions from discrete non-uniform data, and results in a one-dimensional approximation that is accurate and numerically robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Nodarse R., and Dehesa J.S. (2002). Distributions of zeros of discrete and continuous polynomials from their recurrence relation. Appl. Math. Comput. 128:167–190

    Article  MATH  MathSciNet  Google Scholar 

  2. Archibald R., and Gelb A. (2002). Reducing the effects of noise in image reconstruction. J. Sci. Comp. 17(1–4):167–180

    Article  MATH  MathSciNet  Google Scholar 

  3. Archibald R., Gelb A., and Yoon J. (2005). Polynomial fitting for edge detection in irregularly sampled signals and images. SINUM 43:259–279

    MATH  MathSciNet  Google Scholar 

  4. Banerjee, N. S., and Geer, J. (1995). Exponentially Accurate Approximations to Piecewise Smooth Periodic Functions, ICASE Report No. 95–17, NASA Langley Research Center.

  5. Bateman H. (1953). Higher Transcendental Functions, Vol II. McGraw-Hill Book Company Inc., NewYork

    MATH  Google Scholar 

  6. Boyd J.P. (2005). Trouble with Gegenbauer reconstruction for defeating gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial Approximations. J. Comp. Phys. 204:1 253–264

    MathSciNet  Google Scholar 

  7. Boyd J.P. (2001). Chebyshev and Fourier Spectral Methods, 2nd Edn. Dover Publications, Mineola New York

    MATH  Google Scholar 

  8. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin.

  9. Chen H., and Shizgal B.D. (1998). The quadrature discretization method (QDM) in the solution of the Schrödinger equation. J. Math. Chem. 24:321–343

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen H., and Shizgal B.D. (2001). A Spectral solution of the Sturm-Liouville equation: comparison of classical and nonclassical basis sets. J. Comp. Appl. Math. 136:17–35

    Article  MATH  MathSciNet  Google Scholar 

  11. Driscoll T.A., and Fornberg B. (2001). A padé-based algorithm for overcoming the Gibbs phenomenon. Numer. Algorithms 26:77–92

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckhoff K.S. (1995). Accurate reconstructions of functions of finite regularity from Truncated series expansions. Math. Comp. 64:671–690

    Article  MATH  MathSciNet  Google Scholar 

  13. Freud G. (1971). Orthogonal Polynomials. Pergamon press, Oxford

    Google Scholar 

  14. Garcia R.D.M. (1999). The application of nonclassical orthogonal polynomials in particle transport theory. Prog. Nuc. Energy 35(3, 4):249–273

    Article  Google Scholar 

  15. Gautschi W. (2004). Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation Series, Oxford University Press, Oxford

    MATH  Google Scholar 

  16. Gelb A. (2004). Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method. J. Sci. Comput. 20(3):433–459

    Article  MATH  MathSciNet  Google Scholar 

  17. Gelb A., and Jackiewicz Z. (2006). Determining analyticity for parameter optimization of the Gegenbauer reconstruction method. SIAM J. Sci. Comput. 27(3):1014–1032

    Article  MathSciNet  Google Scholar 

  18. Gelb A., and Tadmor E. (2000). Enhanced spectral viscosity approximation for conservation laws. Appl. Num. Math. 33:1–21

    Article  MathSciNet  Google Scholar 

  19. Gelb A., and Tanner J. (2006). Robust reprojection methods for the resolution of the Gibbs phenomenon. ACHA 20(1):3–25

    MATH  MathSciNet  Google Scholar 

  20. Gottlieb D., and Hesthaven J. (2001). spectral methods for hyperbolic problems. J. Comp. Appl. Math. 128:83–131

    Article  MATH  MathSciNet  Google Scholar 

  21. Gottlieb D., and Orszag S. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia

    MATH  Google Scholar 

  22. Gottlieb D., and Shu C.-W. (1997). On the Gibbs phenomenon and its resolution. SIAM Rev. 30:644–668

    Article  MathSciNet  Google Scholar 

  23. Gottlieb D., and Shu C.W. (1998). A general theory for the resolution of the gibbs phenomenon. Atti dei Convegni Lincei 147:39–48

    MathSciNet  Google Scholar 

  24. Gottlieb D., and Shu C.W. (1994). Resolution properties of the fourier method for discontinuous waves. Comput. Methods Appl. Mech. Eng. 116:27–37

    Article  MATH  MathSciNet  Google Scholar 

  25. Gottlieb D., Shu C.W., Solomonoff A., and Vandeven H. (1992). On the Gibbs phenomenon i: recovering exponential accuracy from the fourier partial sum of a nonperiodic analytic function. J. Comp. Appl. Math. 43:81–98

    Article  MATH  MathSciNet  Google Scholar 

  26. Gottlieb, D., and Tadmor, E. (1985). Recovering pointwise values of discontinuous data within spectral accuracy. In Murman, E. M., and Abarbanel, S. S. (eds.), Progress and Supercomputing in Computational Fluid Dynamics, Proceedings of a 1984 U.S.-Israel Workshop, Progress in Scientific Computing, Vol. 6, Birkhauser, Boston, pp. 357–375.

  27. Hesthaven, J. S. Kaber, S. M., and Lurati, L. (2006). Padé-Legendre interpolants for Gibbs Reconstruction. J. Sci. Comput., in press.

  28. Min M.S., Lee T.W., Fischer P.F., and Gray S.K. (2006). Fourier spectral simulations and Gegenbauer reconstructions for electromagnetic waves in the presence of a metal nanoparticle. J. Comp. Phys. 213(2):730–747

    Article  MATH  Google Scholar 

  29. Nikiforov, A. F., Suslov, S. K., and Uvarov, V. B. (1991). Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag.

  30. Szego G. (1939). Orthogonal Polynomials. American Mathematical Society, Providence

    Google Scholar 

  31. Shizgal B. (2002). Spectral methods based on nonclassical basis functions: The advection-diffusion equations. Comput. Fluids 31:825–843

    Article  MATH  MathSciNet  Google Scholar 

  32. Shizgal B., and Jung J.-H. (2003). Towards the resolution of the Gibbs phenomena. J. Comp. Appl. Math. 161:41–65

    Article  MATH  MathSciNet  Google Scholar 

  33. Tadmor E. (1989). Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26:30–44

    Article  MATH  MathSciNet  Google Scholar 

  34. Tadmor E., and Tanner J. (2002). Adaptive mollifiers – high-resolution recovery of piecewise smooth data from its spectral information. J. Found. Comp. Math. 2:155–189

    MATH  MathSciNet  Google Scholar 

  35. Tanner J. (2006). Optimal filter and mollifier for piecewise smooth spectral data. Math. Comp. 75, (254) 767–790.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Gelb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelb, A. Reconstruction of Piecewise Smooth Functions from Non-uniform Grid Point Data. J Sci Comput 30, 409–440 (2007). https://doi.org/10.1007/s10915-006-9099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9099-3

Keywords

AMS(MOS) SUBJECT CLASSIFICATION

Navigation