Skip to main content
Log in

Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Spectral element approximations for triangles are not yet as mature as for quadrilaterals. Here we compare different algorithms and show that using an integration rule based on Gauss-points for simplices is of interest. We point out that this can be handled efficiently and allows to recover the convergence rate theoretically expected, even with curved elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bos L. (1991). On certain configurations of points in \(\mathbb{R}^n\) which are unisolvent for polynomial interpolation. J. Approx. Theory 64:271–280

    Article  MATH  MathSciNet  Google Scholar 

  2. Bos L., Taylor M.A., and Wingate B.A. (2001). Tensor product Gauss-Lobatto points are Fekete points for the cube. Math. Comp. 70:1543–1547

    Article  MathSciNet  Google Scholar 

  3. Chen Q., and Babuška I. (1995). Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128:485–494

    Google Scholar 

  4. Chen Q., and Babuška I. (1996). The optimal symmetrical points for polynomial interpolation of real functions in a tetrahedron. Comput. Methods Appl. Mech. Eng. 137:89–94

    Article  Google Scholar 

  5. Cools R. (2002). Advances in multidimensional integration. J. Comput. Appl. Math. 149:1–12

    Article  MATH  MathSciNet  Google Scholar 

  6. Demkowicz, L., Walsh, T., Gerdes, K., and Bajer, A. (1998). 2D hp-adaptative finite element package Fortran 90 implementation (2Dhp90), TICAM Report 98–14.

  7. Dubiner M. (1991). Spectral methods on triangles and other domains. J. Sci. Comput. 6:345–390

    Article  MATH  MathSciNet  Google Scholar 

  8. Hesthaven J.S. (1998). From electrostatic to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35:655–676

    Article  MATH  MathSciNet  Google Scholar 

  9. Hesthaven J.S., and Teng C.H. (2000). Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21:2352–2380

    Article  MathSciNet  Google Scholar 

  10. Hesthaven J.S., and Warburton T. (2002). Nodal high-order methods on unstructured grids. J. Comput. Phys. 181: 186–221

    Article  ADS  MathSciNet  Google Scholar 

  11. Karniadakis G.E., and Sherwin S.J. (1999). Spectral hp Element Methods for CFD. Oxford University Press, London

    Google Scholar 

  12. Pasquetti R., and Rapetti F. (2004). Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198:349–362

    Article  ADS  Google Scholar 

  13. Stroud A.H., and Secrest D. (1966). Gaussian Quadrature Formulas. Prentice Hall, NJ

    Google Scholar 

  14. Stroud A.H. (1971). Approximate Calculations of Multiple Integrals. Prentice Hall, NJ

    Google Scholar 

  15. Taylor M.A., Wingate B.A., and Vincent R.E. (2000). An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38:1707–1720

    Article  MathSciNet  Google Scholar 

  16. Taylor M.A., and Wingate B.A. (2000). A generalized diagonal mass matrix spectral element method for non-quadrilateral elements. Appl. Num. Math. 33:259–265

    Article  MathSciNet  Google Scholar 

  17. Taylor, M. A., Wingate, B. A., and Bos, L. P. (2004). A new algorithm for computing Gauss-like quadrature points, ICOSAHOM 2004 proc., Brown University.

  18. Wandzura S., and Xiao H. (2003). Symmetric quadrature rules on a triangle. Comput. Math. Appl. 45:1829–1840

    Article  MathSciNet  Google Scholar 

  19. Warburton T., Pavarino L., and Hesthaven J.S. (2000). A pseudo-spectral scheme for the incompressible Navier–Stokes equations using unstructured nodal elements. J. Comput. Phys. 164:1–21

    Article  ADS  CAS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pasquetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquetti, R., Rapetti, F. Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances. J Sci Comput 27, 377–387 (2006). https://doi.org/10.1007/s10915-005-9048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9048-6

Keywords

Navigation