Skip to main content
Log in

Asymptotic Fourier Coefficients for a C∞ Bell (Smoothed-“Top-Hat”) & the Fourier Extension Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In constructing local Fourier bases and in solving differential equations with nonperiodic solutions through Fourier spectral algorithms, it is necessary to solve the Fourier Extension Problem. This is the task of extending a nonperiodic function, defined on an interval \(x \in [-\chi, \chi]\), to a function \(\tilde{f}\) which is periodic on the larger interval \(x \in [-\Theta, \Theta]\). We derive the asymptotic Fourier coefficients for an infinitely differentiable function which is one on an interval \(x \in [-\chi, \chi]\), identically zero for \(|x| < \Theta\), and varies smoothly in between. Such smoothed “top-hat” functions are “bells” in wavelet theory. Our bell is (for x ≥ 0) \(\mathcal{T}(x; L, \chi, \Theta)=(1+\mbox{erf}(z))/2\) where \(z=L \xi/\sqrt{1-\xi^{2}}\) where \(\xi \equiv -1 + 2 (\Theta-x)/(\Theta - \chi)\). By applying steepest descents to approximate the coefficient integrals in the limit of large degree j, we show that when the width L is fixed, the Fourier cosine coefficients a j of \(\mathcal{T}\) on \(x \in [-\Theta, \Theta]\) are proportional to \(a_{j} \sim (1/j) \exp(- L \pi^{1/2} 2^{-1/2} (1-\chi/\Theta)^{1/2} j^{1/2}) \Lambda(j)\) where Λ(j) is an oscillatory factor of degree given in the text. We also show that to minimize error in a Fourier series truncated after the Nth term, the width should be chosen to increase with N as \(L=0.91 \sqrt{1 - \chi/\Theta} N^{1/2}\). We derive similar asymptotics for the function f(x)=x as extended by a more sophisticated scheme with overlapping bells; this gives an even faster rate of Fourier convergence

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averbuch A., Braverman E., Coifman R., Israeli M., Sidi A. (2000). Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases. Appl. Comput. Harmonic Anal 9:19–53

    Article  MATH  MathSciNet  Google Scholar 

  2. Averbuch A., Ioffe L., Israeli M., Vozovoi L. (1997). Highly scalable two- and three-dimensional Navier-Stokes parallel solvers on MIMD multiprocessors. J. Supercomput 11(1):7–39

    Article  Google Scholar 

  3. Averbuch A., Ioffe L., Israeli M., Vozovoi L. (1998). Two-dimensional parallel solver for the solution of Navier–Stokes equations with constant and variable coefficients using ADI on cells. Parallel Comput. 24(5–6):673–699

    Article  MATH  MathSciNet  Google Scholar 

  4. Averbuch A., Israeli M., Vozovoi L., (1995). Parallel implementation of nonlinear evolution problems using parabolic domain decomposition. Parallel Comput 21(7):1151–1183

    Article  MathSciNet  MATH  Google Scholar 

  5. Averbuch A., Vozovoi L., Israeli M., (1997). On a fast direct elliptic solver by a modified Fourier method. Numer. Algorithms 15(3–4):287–313

    Article  MATH  MathSciNet  Google Scholar 

  6. Bittner K., Chui C.K. (1999). From local cosine bases to global harmonics. Appl. Comput. Harmonic Anal 6:382–399

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd J.P. (1982). The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys 45: 43–79

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyd J.P. (1984). The asymptotic coefficients of Hermite series. J. Comput. Phys 54:382–410

    Article  MATH  MathSciNet  Google Scholar 

  9. Boyd J.P. (1987). Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys 70:63–88

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd J.P. (1987). Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys 69:112–42

    Article  MATH  MathSciNet  Google Scholar 

  11. Boyd J.P. (1989). New directions in solitons and nonlinear periodic waves: Polycnoidal waves, imbricated solitons, weakly non-local solitary waves and numerical boundary value algorithms. In Wu T.-Y., Hutchinson J.W (eds). Advances in Applied Mechanics. Academic Press, New York, pp. 1–82

    Google Scholar 

  12. Boyd J. P. (1994). The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-mapping for pseudospectral computations on an infinite interval. J. Comput. Phys 110:360–72

    Article  MathSciNet  Google Scholar 

  13. Boyd J.P. (1996). Asymptotic Chebyshev coefficients for two functions with very rapidly or very slowly divergent power series about one endpoint. Appl. Math. Lett 9(2):11–15

    Article  MathSciNet  MATH  Google Scholar 

  14. Boyd J.P. (1997). Construction of Lighthill’s unitary functions: The imbricate series of unity. Applied Mathematics Comput. 86:1–10

    Article  MATH  MathSciNet  Google Scholar 

  15. Boyd J.P. (2001). Additive blending of local approximations into a globally- valid approximation with application to new analytic approximations to the dilogarithm. Appl. Math. Lett 14:477–481

    Article  MathSciNet  MATH  Google Scholar 

  16. Boyd J.P. (2001). Chebyshev and Fourier Spectral Methods. Dover, Mineola, New York, 2nd edition, 665 pp.

    MATH  Google Scholar 

  17. Boyd J.P. (2002). A comparison of numerical algorithms for Fourier Extension of the First, Second and Third Kinds. J. Comput. Phys 178:118–60

    Article  MATH  MathSciNet  Google Scholar 

  18. Boyd, J. P. (2005). Fourier embedded domain methods: Extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and c . Appl. Math. Comput 161(2):591–97

    Article  MATH  MathSciNet  Google Scholar 

  19. Boyd J.P. (2005). Limited-area Fourier spectral models and data analysis schemes: Windows, Fourier extension, Davies relaxation and all that. Month. Weather Rev 133:2030–2043

    Article  Google Scholar 

  20. Cloot A., Weideman J.A.C. (1992). An adaptive algorithm for spectral computations on unbounded domains. J. Computational Phys. 102:398–406

    Article  MATH  MathSciNet  Google Scholar 

  21. Coifman R., Meyer Y. (1991). Remarques sur l’analyse de Fourier á fenêtre, série. C. R. Acad. Sci. Paris Sér I. Math 312:259–61

    MATH  MathSciNet  Google Scholar 

  22. Elghaoui M., Pasquetti R. (1996). Mixed spectral-boundary element embedding algorithms for the Navier-Stokes equations in the vorticity-stream function formulation. J. Comput. Phys 153:82–100

    Article  MathSciNet  Google Scholar 

  23. Elghaoui M., Pasquetti R. (1996). A spectral embedding method applied to the advection-diffusion equation. J. Comput. Phys 125:464–76

    Article  MATH  MathSciNet  Google Scholar 

  24. Elliott D. (1964). The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comp 18:274–84

    Google Scholar 

  25. Elliott, D. (1965). Truncation errors in two Chebyshev series approximations. Math. Comp 19:234–48

    Article  MATH  MathSciNet  Google Scholar 

  26. Elliott D., Szekeres G. (1965). Some estimates of the coefficients in the Chebyshev expansion of a function. Math. Comp 19:25–32

    Article  MATH  MathSciNet  Google Scholar 

  27. Elliott D., Tuan P.D. (1974). Asymptotic coefficients of Fourier coefficients. SIAM J. Math. Anal 5:1–10

    Article  MATH  MathSciNet  Google Scholar 

  28. Garbey M. (2000). On some applications of the superposition principle with Fourier basis. SIAM J. Sci. Comput 22(3): 1087–116

    Article  MATH  MathSciNet  Google Scholar 

  29. Garbey M., Tromeur-Dervout D. (1998). A new parallel solver for the nonperiodic incompressible Navier-Stokes equations with a Fourier method: Application to frontal polymerization. J. Comput. Phys 145(1):316–31

    Article  MATH  MathSciNet  Google Scholar 

  30. Haugen J. E., Machenhauer B. (1993). A spectral limited-area model formulation with time-dependent boundary conditions applied to the shallow-water equations. Monthly Weather Rev 121:2618–30

    Article  Google Scholar 

  31. Högberg M., Henningson D.S. (1998). Secondary instability of cross-flow vortices in falkner-skan-cooke boundary layers. J. Fluid Mech 368:339–57

    Article  MATH  MathSciNet  Google Scholar 

  32. Israeli M., Vozovoi L., Averbuch A. (1993). Spectral multidomain technique with local Fourier basis. J. Sci. Comput 8(2):135–49

    Article  MATH  MathSciNet  Google Scholar 

  33. Israeli M., Vozovoi L., Averbuch A. (1994). Domain decomposition methods with local fourier basis for parabolic problems. Contemp. Math 157:223–30

    MATH  MathSciNet  Google Scholar 

  34. Jawerth B., Sweldens W. (1995). Biorthogonal smooth local trigonometric bases. J. Fourier Anal. Appl 2(2):109–33

    Article  MATH  MathSciNet  Google Scholar 

  35. Matviyenko G. (1996). Optimized local trigonometric bases. Appl. Comput. Harmonic Anal 3:301–23

    Article  MATH  MathSciNet  Google Scholar 

  36. Miller G.F. (1966). On the convergence of Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal 3:390–409

    Article  MATH  MathSciNet  Google Scholar 

  37. Németh G. (1992). Mathematical Approximation of Special Functions: Ten Papers on Chebyshev Expansions. Nova Science Publishers, New York, 200 pp

    Google Scholar 

  38. Nordström J., Nordin N., Henningson D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput 20(4):1365–93

    Article  MATH  MathSciNet  Google Scholar 

  39. Schumer J.W., Holloway J.P. (1998). Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys 144(2):626–61

    Article  MATH  Google Scholar 

  40. Shen J. (2000). Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal 38:1113–33

    Article  MATH  MathSciNet  Google Scholar 

  41. Tang T. (1993). The Hermite spectral method for Gaussian-type functions. SIAM J. Scientific Comput. 14:594–606

    Article  MATH  Google Scholar 

  42. Vozovoi L., Israeli M., Averbuch A. (1996). Multi-domain Local Fourier method for PDEs in complex geometries. J. Comput. Appl. Math 66(1-2):543–55

    Article  MATH  MathSciNet  Google Scholar 

  43. Vozovoi L., Weill A., Israeli M. (1997). Spectrally accurate solution of non-periodic differential equations by the Fourier-Gegenbauer method. SIAM J. Numer. Anal 34(4):1451–71

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.P. Asymptotic Fourier Coefficients for a C∞ Bell (Smoothed-“Top-Hat”) & the Fourier Extension Problem. J Sci Comput 29, 1–24 (2006). https://doi.org/10.1007/s10915-005-9010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9010-7

Keywords

Navigation