Skip to main content
Log in

Blind Wavelet Compression of the Solution of a Nonlinear PDE with Singular Forcing Term Within Optimal Order Cost: Stability of Restricted Approximation to Small Errors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Level lifting of the wavelet expansion is related to an interpolation result for Sobolev H s spaces; the nonlinear N-term approximation is linked with a nonlinear interpolation result for Sobolev spaces W s,p noncompactly included into L 2. Cohen et al. (2000, Constr. Approx. 16 (1), 85–113) introduced the intermediate notion of restricted approximation. Based on this, we construct an optimal order resolution algorithm extending beyond the linear elliptic case of Cohen et al. (2001, Math. Comput. 70 (233), 27–75), as we illustrate numerically. We undeline that optimal order adaptivity implies the blind compression of the unknown of the PDE. We illustrate on a univariate version of the bivariate PDE \(\Delta u + e^{cu} = 0\), c > 0, used to benchmark three nonadaptive multilevel methods Hackbusch (1992, Z. Angew. Math. Mech. 72 (2), 148–151). The adaptiveness of our algorithm is highlighted by the addition in this illustration of a singular forcing term. This term is an element of H −1 but does not belong to H −5/6: more precisely, it is the second derivative of \(t\mapsto |3t -1|^{2/3}\). This illustration passed the numerical implementation test \((C\varepsilon^{-0.505}\) flops). The algorithm’s convergence and cost \((\varepsilon^{-d}/(s-1)\) where ɛ is the final error in H 1 norm) in both univariate (d=1) and bivariate (d=2) general cases is shown to have optimal order, with s less than three. © John Wiley and Sons, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baraniuk RG., DeVore R., Kyriazis G., Yu XM. (2002). Near best tree approximation. Adv. Comput. Math. 1(1):357–373

    Article  MathSciNet  Google Scholar 

  • Cohen A.. (2000). Wavelet methods in numerical analysis. In Handbook of numerical analysis Vol. 7 (part 3). Elsevier Amsterdam. pp. 417–711

  • Cohen A., Dahmen W., DeVore R. (2001). Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput. 70(233): 27–75

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A., Dahmen W., DeVore R. (2003). Sparse multiscale evaluation of nonlinear composition of functions. SIAM J.Math. Anal. 35: 279–303

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A., DeVore R., Hochmuth R. (2000). Restricted nonlinear approximation. Constr. Approx. 16(1):85–113

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A., DeVore R., Kerkyacharian G., Picard D. (2001). Maximal spaces with given rate of convergence for thresholding algorithms. Appl. Comput. Harmon. Anal. 11(2):167–191

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A., Kaber SM. Müller S., Postel M. (2003). Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241): 183–225

    MATH  Google Scholar 

  • Cohen A., Masson R. (1999). Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity. SIAM J.Sci. Comput. 21(3): 1006–1026

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W., Micchelli CA. (1993). Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer.Anal. 30(2): 507–537

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W., Schneider R., Xu Y. (2000). Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation. Numer. Math. 86(1): 49–101

    Article  MATH  MathSciNet  Google Scholar 

  • DeVore RA. (1998). Nonlinear approximation. Acta Num. 7: 51–150

    Article  MATH  MathSciNet  Google Scholar 

  • Hackbusch W. (1992). Comparison of different multi-grid variants for nonlinear equations. Z. Angew. Math. Mech. 72(2): 148–151

    MathSciNet  MATH  Google Scholar 

  • Jouini A., Lemarié-Rieusset PG. (1993). Analyse multi-résolution bi-orthogonale sur l’intervalle et applications.(Biorthogonal multiresolution analysis on the interval and applications). Ann. Inst. Henri Poincaré, Anal. Non Linéaire. 10(4): 453–476

    MATH  Google Scholar 

  • Runst T., Sickel W. (1996). Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations. In de Gruyter Series in Nonlinear Analysis and Applications, Vol. 3, de Gruyter, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Goujot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goujot, D. Blind Wavelet Compression of the Solution of a Nonlinear PDE with Singular Forcing Term Within Optimal Order Cost: Stability of Restricted Approximation to Small Errors. J Sci Comput 29, 257–297 (2006). https://doi.org/10.1007/s10915-005-9003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9003-6

Keywords

Navigation