Skip to main content
Log in

On Multi-Mesh H-Adaptive Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Solutions of many practical problems involve several components which have different natures and/or different locations of singularity. As a result, a single mesh may not be able to achieve satisfactory adaptation result. In this paper, a new adaptive mesh implementation strategy using multiple meshes is developed, which is especially useful for problems whose solution components exhibit different singularity behaviors. We describe the basic ideas and ingredients of the multi-mesh adaptive methods. Numerical results for solving partial differential equations and optimal control problems are presented to demonstrate the advantages of the multi-mesh approach

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth B. Senior (1997) ArticleTitleAspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers Comput. Methods Appl. Mech. Eng. 150 65–87 Occurrence Handle10.1016/S0045-7825(97)00101-1

    Article  Google Scholar 

  2. I. Babuska W. Rheinboldt (1978) ArticleTitleError estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736–754 Occurrence Handle10.1137/0715049

    Article  Google Scholar 

  3. Bangerth W., Kanschat G. (1999). Concepts for object-oriented finite element software – the deal II library Preprint 99–43, Sonderforschungbereich 3–59, IWR, University of Heidelberg

  4. Bangerth W., Kanschat, G. (1999). deal II Differential Equations Analysis LibraryTechnical Reference, http://www.dealii.org/ or http://gaia.iwr.uni-heidelberg.de/~deal

  5. P. Bastian K. Birken K. Johannsen S. Lang N. Neub H. Rentz-Reichert C. Wieners (1997) UG A flexible software toolbox for solving partial differential equations Computing and Visualization in Science 1 27–40

    Google Scholar 

  6. Z. Chen R.H. Nochetto (2000) ArticleTitleResidual type a posteriori error estimates for elliptic obstacle problems Numer. Math. 84 527–548 Occurrence Handle10.1007/s002110050009

    Article  Google Scholar 

  7. Huang Y.-Q., Li R., Liu W.-B., Yan N.-N. (2003). Efficient discretization for finite element approximation of constrained optimal control problems. submitted to SIAM J. Control Optimization

  8. B. Heimsund X.-C. Tai J.-P. Wang (2002) ArticleTitleSuperconvergence for the gradient of finite element approximations by L2-projections SIAM J. Numer. Anal. 40 1263–1280 Occurrence Handle10.1137/S003614290037410X

    Article  Google Scholar 

  9. D.W. Kelly J.P. De S.R. Gago O.C. Zienkiewicz I. Babuska (1983) ArticleTitleA posteriori error analysis and adaptive processes in the finite element method: Part I-Error analysis Int. J. Numer. Meth. Eng. 19 1593–1619 Occurrence Handle10.1002/nme.1620191103

    Article  Google Scholar 

  10. R. Li W.-B. Liu H.-P. Ma T. Tang (2002) ArticleTitleAdaptive Finite element approximation for distributed elliptic optimal control problems SIAM J. Optimization, and Control 41 1321–1349

    Google Scholar 

  11. R. Li P.-W. TangT. Zhang (2001) ArticleTitleMoving mesh methods in multiple dimensions based on harmonic maps J. Comput. Phys. 170 562–588 Occurrence Handle10.1006/jcph.2001.6749

    Article  Google Scholar 

  12. W.B. Liu H.P. Ma T. Tang (2001) ArticleTitleOn mixed error estimates for elliptic obstacle problems Adv. Comput. Math. 15 261–283 Occurrence Handle10.1023/A:1014261013164

    Article  Google Scholar 

  13. K. Miller R.N. Miller (1981) ArticleTitleMoving finite element methods I SIAM J. Numer. Anal. 18 1019–1032 Occurrence Handle10.1137/0718070

    Article  Google Scholar 

  14. Schmidt A., Siebert K.G. (2000). ALBERT An adaptive hierarchical finite element toolbox. Preprint 06/2000, University of Freiburg. http://www.mathemtik.uni-freiburg.de/IAM/ALBERT

  15. R. Verfurth (1996) A Review of a Posteriori Error Estimation and Adaptive Mesh- Refinement Techniques Wiley-Teubner Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R. On Multi-Mesh H-Adaptive Methods. J Sci Comput 24, 321–341 (2005). https://doi.org/10.1007/s10915-004-4793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4793-5

Keywords

Navigation