Skip to main content

Advertisement

Log in

Endocranial cast anatomy of the Early Miocene glyptodont Propalaehoplophorus australis (Mammalia, Xenarthra, Cingulata) and its evolutionary implications

  • Research
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Propalaehoplophorus is an Early Miocene genus of glyptodonts, a group of extinct armored mammals closely related to armadillos and endemic to South America. Here, we present the first digital reconstruction of the endocranial cavity of the glyptodont Propalaehoplophorus australis and compare it to endocasts of Late Miocene and Pleistocene glyptodonts, pampatheres, and extant armadillos. Propalaehoplophorus australis shares exclusively with other glyptodonts the neocortical sulcation pattern and cranial nerve (CN) V3 pathway. It also shares with both other glyptodonts and pampatheres the rhinal fissure trajectory, small piriform lobe, marked dorsal expansion of neocortical fronto-parietal region, conspicuous thickness of superior longitudinal sinus, and presence of a well-marked lateral sulcus and medial shape of petrosal bone; this last trait is also observable in Chlamyphorus. The olfactory bulbs of Pr. australis, Holmesina, and Pampatherium are anteriorly elongated and partially laterally divergent as in the glyptodont Pseudoplohophorus absolutus. Other features, like the globular proximal shape of olfactory peduncles, topological arrangement of CNs IX-XII, differentiated petrosal lobule of paraflocculus, and orientation of spinal cord are shared among Pr. australis, Ps. absolutus, pampatheres, and extant armadillos. The similarities between Pr. australis, remaining glyptodonts, and pampatheres could be synapomorphies of pampatheres + glyptodonts. By contrast, Pr. australis, pampatheres, and all the analyzed armadillos share the same configuration of the pathway of CNs IX-XII, a feature that could support the basal position of Pr. australis among glyptodonts for which cranial remains are known. In this context, the brain cavity seems to be a promising source of information for revealing the evolutionary history of this mammalian clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The complete dataset is available from AT upon request.

References

  • Abba AM, Cassini GH, Galliari FC (2011) Nuevos aportes a la historia natural de la mulita pampeana Dasypus hybridus (Mammalia, Dasypodidae). Iheringia Ser Zool 101:325–335. https://doi.org/10.1590/s0073-47212011000300007

    Article  Google Scholar 

  • Abba AM, Zufiaurre E, Codesido M, Bilenca DN (2015) Burrowing activity by armadillos in agroecosystems of central Argentina: Biogeography, land use, and rainfall effects. Agr Ecosyst Environ 200:54–61. https://doi.org/10.1016/j.agee.2014.11.001

    Article  Google Scholar 

  • Ahrens HE (2014) Morphometric study of phylogenetic and ecologic signals in procyonid (Mammalia: Carnivora) endocasts. Anat Record 297:2318–2330. https://doi.org/10.1002/AR.22996

    Article  Google Scholar 

  • Araújo JVS, Cavalcante MMA de S, Gonçalves PC de J, Guerra SPL, Da Silva ABS, Conde Júnior AM (2015) Descriptive macroscopic anatomy of the central nervous system six-banded armadillo (Euphractus sexcintus, Linnaeus, 1758) and nine-banded armadillo (Dasypus novemcinctus, Linnaeus, 1758). J Interdiscipl Biosci 1:13–17. https://doi.org/10.26694/2448-0002.vl1iss1pp13-17

  • Arnold P (2021) Evolution of the mammalian neck from developmental, morpho-functional, and paleontological perspectives. J Mamm Evol 28:173–183. https://doi.org/10.1007/s10914-020-09506-9

    Article  Google Scholar 

  • Aurboonyawat T, Pereira V, Kring T, Toulgoat F, Churojana A, Lasjaunias P (2008) Patterns of the cranial venous system from the comparative anatomy in vertebrates Part II The lateral-ventral venous system. Interv Neuroradiol 14:21–31. https://doi.org/10.1177/159101990801400103

    Article  CAS  PubMed  Google Scholar 

  • Barasoain D, Zurita AE., Croft DA, Montalvo CI, Contreras VH, Miño-Boilini ÁR, Tomassini RL (2022) A New Glyptodont (Xenarthra: Cingulata) from the Late Miocene of Argentina: new clues about the oldest extra-patagonian radiation in southern South America. J Mamm Evol 29:263–282

    Article  Google Scholar 

  • Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, Wanket J, Marshall CR (2016) Variable impact of Late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc Natl Acad Sci USA 113:856–861.

    Article  CAS  Google Scholar 

  • Bertrand OC, San Martin-Flores G, Silcox MT (2019) Endocranial shape variation in the squirrel-related clade and their fossil relatives using 3D geometric morphometrics: contributions of locomotion and phylogeny to brain shape. J Zool 308:197–211. https://doi.org/10.1111/JZO.12665

    Article  Google Scholar 

  • Bertrand OC, Püschel HP, Schwab JA, Silcox MT, Brusatte SL (2021) The impact of locomotion on the brain evolution of squirrels and close relatives. Commun Biol 460.

  • Bertrand OC, Jiménez Lao M, Shelley SL, Wible JR, Williamson TE, Meng J, Brusatte SL (2023) The virtual brain endocast of Trogosus (Mammalia, Tillodontia) and its relevance in understanding the extinction of archaic placental mammals. J Anat. https://doi.org/10.1111/joa.13951

  • Billet, G, Hautier L, de Muizon C, Valentin X (2011) Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution. Proc R Soc B 278:2791–2797. https://doi.org/10.1098/rspb.2010.2443

    Article  PubMed  PubMed Central  Google Scholar 

  • Billet G, Hautier L, Lebrun R (2015) Morphological diversity of the bony labyrinth (Inner Ear) in extant xenarthrans and its relation to phylogeny. J Mammal 96:658–672. https://doi.org/10.1093/jmammal/gyv074

    Article  Google Scholar 

  • Boscaini A, Iurino DA, Billet G, Hautier L, Sardella R, Tirao G, Gaudin TJ, Pujos F (2018) Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina. Sci Nat 105:28. https://doi.org/10.1007/s00114-018-1548-y

  • Boscaini A, Iurino DA, Mamani Quispe B, Andrade Flores R, Sardella R, Pujos F, Gaudin TJ (2020a) Cranial anatomy and paleoneurology of the extinct sloth Catonyx tarijensis (Xenarthra, Mylodontidae) from the Late Pleistocene of Oruro, Southwestern Bolivia. Front Ecol Evol 8:69. https://doi.org/10.3389/fevo.2020.00069

  • Boscaini A, Iurino DA, Sardella R, Tirao G, Gaudin TJ, Pujos F (2020b) Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina: description and comparison with the extant sloths. J Mamm Evol 27:55–71. https://doi.org/10.1007/s10914-018-9441-1

    Article  Google Scholar 

  • Carter TS, Superina M, Leslie DM (2016) Priodontes maximus (Cingulata: Chlamyphoridae). Mamm Species 48(932):21–34. https://doi.org/10.1093/mspecies/sew002

    Article  Google Scholar 

  • Cassini GH, Vizcaíno SF, Bargo MS (2012) Body mass estimation in Early Miocene native South American ungulates: A predictive equation based on 3D landmarks. J Zool 287:53–64. https://doi.org/10.1111/J.1469-7998.2011.00886.X

    Article  Google Scholar 

  • Christen ZM, Sánchez-Villagra MR, Le Verger K (2023). Cranial and endocranial comparative anatomy of the Pleistocene glyptodonts from the Santiago Roth Collection. Swiss J Palaeontol 142:1-32.

    Article  Google Scholar 

  • Ciancio MR, Vieytes EC, Castro MC, Carlini AA (2021) Dental enamel structure in long-nosed armadillos (Xenarthra: Dasypus) and its evolutionary implications. Zool J Linn Soc Lond 192:1237–1252. https://doi.org/10.1093/zoolinnean/zlaa119

    Article  Google Scholar 

  • Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: An open-source mesh processing tool. Proceedings of the Sixth Eurographics Italian Chapter Conference, pp 129–136

  • Cope ED (1889) The Edentata of North America. Am Nat 23:657–664

    Article  Google Scholar 

  • Croft DA, Flynn JJ, Wyss AR (2007) A new basal glyptodontid and other Xenarthra of the early Miocene Chucal Fauna, Northern Chile. J Vert Paleon 27:781–797. https://doi.org/10.1671/0272-4634(2007)27[781:ANBGAO]2.0.CO;2

    Article  Google Scholar 

  • Cuadrelli F, Zurita AE, Toriño P, Miño-Boilini ÁR, Perea D, Luna CA, Gillette DD, Medina O (2020) A new species of glyptodontine (Mammalia, Xenarthra, Glyptodontidae) from the Quaternary of the Eastern Cordillera, Bolivia: phylogeny and palaeobiogeography. J Syst Palaeontol 18:1543–1566. https://doi.org/10.1080/14772019.2020.1784300

    Article  Google Scholar 

  • Dechaseaux C (1958) Encéphales de xenarthres fossiles. In: Piveteau, J (ed) Traité de Paléontologie, Masson et Cie, París, pp 637–640

  • Dechaseaux C (1962) Encéfalos de notongulados y de desdentados xenarthros fósiles. Ameghiniana 2:193–209

    Google Scholar 

  • De Iuliis G, Bargo MS, Vizcaíno SF (2001) Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. J Vertebr Paleontol 20:743–754. https://doi.org/10.1671/0272-4634(2000)020[0743:VISMAM]2.0.CO;2

    Article  Google Scholar 

  • De Iuliis G, Pulerà D (2019) The Dissection of Vertebrates. Academic Press, Cambridge

    Google Scholar 

  • Delsuc F, Stanhope MJ, Douzery EJP (2003) Molecular systematics of armadillos (Xenarthra, Dasypodidae): Contribution of maximum likelihood and Bayesian analyses of mitochondrial and nuclear genes. Mol Phylogenet Evol 28:261–275. https://doi.org/10.1016/S1055-7903(03)00111-8

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Gibb GC, Kuch M, Billet G, Hautier L, Southon J, Rouillard JM, Fernicola JC, Vizcaíno SF, MacPhee RDE, Poinar HN (2016) The phylogenetic affinities of the extinct glyptodonts. Curr Biol 26:155–156. https://doi.org/10.1016/j.cub.2016.01.039

    Article  CAS  Google Scholar 

  • Dozo MT (1987) The endocranial cast of an Early Miocene edentate, Hapalops indifferens Ameghino (Mammalia, Edentata, Tardigrada, Megatheriidae): Comparative study with brains of recent sloths. J Hirnforsc 28:397–406

    CAS  Google Scholar 

  • Dozo MT (1989) Estudios correlativos paleo-neoneurológicos en edentados xenartros (Mammalia, Edentata, Xenarthra): neuroevolución. Dissertation, Universidad Nacional de La Plata, Argentina

  • Dozo MT (1994) Interpretación del molde endocraneano de Eucholoeops fronto, un Megalonychidae (Mammalia, Xenarthra, Tardigrada) del Mioceno temprano de Patagonia (Argentina). Ameghiniana 31:317–329

    Google Scholar 

  • Dozo MT (1998) Neuromorfología de Utaetus buccatus (Xenarthra, Dasypodidae): un armadillo del Eoceno temprano de la Provincia del Chubut, Argentina. Ameghiniana 35:285–289.

    Google Scholar 

  • Dozo MT, Martínez G (2016) First digital cranial endocasts of late Oligocene Notohippidae (Notoungulata): Implications for endemic South American ungulates brain evolution. J Mamm Evol 23:1–16. https://doi.org/10.1007/s10914-015-9298-5

    Article  Google Scholar 

  • Engelmann GF (1985) The phylogeny of the Xenarthra. In: G.G. Montgomery (ed) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas, Smithsonian Institution Press, Washington, D.C., pp 51–64

    Google Scholar 

  • Fariña RA, Vizcaíno SF (2001) Carved teeth and strange jaws: How glyptodonts masticated. Acta Palaeontol Pol 46:219–234

    Google Scholar 

  • Fariña RA, Vizcaíno SF, Bargo MS (1998) Body mass estimations in Lujanian (Late Pleistocene-Early Holocene of South America) mammal megafauna. Mastozool Neotrop 5:87–108

    Google Scholar 

  • Fedorov A, Beichel R et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/J.MRI.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Monescillo M, Antoine PO, Pujo, F, Gomes Rodrigues H, Mamani Quispe B, Orliac M (2019) Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): New insights and implications on notoungulate encephalization and brain evolution. J Mamm Evol 26:85–100. https://doi.org/10.1007/s10914-017-9416-7

    Article  Google Scholar 

  • Fernicola JC (2008) Nuevos aportes para la sistemática de los Glyptodontia Ameghino 1889 (Mammalia, Xenarthra, Cingulata). Ameghiniana 45:553–574

    Google Scholar 

  • Fernicola JC, Porpino KO (2012) Exoskeleton and systematics: A historical problem in the classification of glyptodonts. J Mamm Evol 19:171–183. https://doi.org/10.1007/s10914-012-9186-1

    Article  Google Scholar 

  • Fernicola JC, Toledo N, Bargo MS, Vizcaíno SF (2012) A neomorphic ossification of the nasal cartilages and the structure of paranasal sinus system of the glyptodont Neosclerocalyptus Paula Couto 1957 (Mammalia, Xenarthra). Palaeontol Electron 15:1–22. https://doi.org/10.26879/333

  • Fernicola JC, Rinderknecht A, Jones W, Vizcaíno SF, Porpino K (2018) A new species of Neoglyptatelus (Mammalia, Xenarthra, Cingulata) from the Late Miocene of Uruguay provides new insights on the evolution of the dorsal armor in cingulates. Ameghiniana 55:233–252. https://doi.org/10.5710/AMGH.02.12.2017.3150

    Article  Google Scholar 

  • Fernicola JC, Zimicz AN, Chornogubsky L, Ducea M, Cruz LE, Bond M, Arnal M, Cárdenas M, Fernández M (2021) The Early Eocene climatic optimum at the lower section of the Lumbrera Formation (Ypresian, Salta province, Northwestern Argentina): origin and early diversification of the Cingulata. J Mamm Evol 28:621–633. https://doi.org/10.1007/S10914-021-09545-W

    Article  Google Scholar 

  • Ferreira-Cardoso S, Araújo R, et al (2017) Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates. Sci Rep 7:2005. https://doi.org/10.1038/s41598-017-01981-0

    Article  CAS  Google Scholar 

  • Gallo JA, Fasola L, Abba AM (2019) Armadillos as natural pests control? Food habits of five armadillo species in Argentina. Mastozool Neotrop 26:117–127. https://doi.org/10.31687/saremMN.19.26.1.0.03

  • Gannon PJ, Eden AR, Laitman JT (1988) The subarcuate fossa and cerebellum of extant primates: Comparative study of a skull‐brain interface. Am J Phys Anthropol 77:143–164. https://doi.org/10.1002/ajpa.1330770202

    Article  CAS  PubMed  Google Scholar 

  • Gaudin TJ, Wible JR, (2006) The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago, pp 153–198

    Google Scholar 

  • Gaudin TJ, Mcdonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Florida, pp 24–36

    Google Scholar 

  • Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96:622–634. https://doi.org/10.1093/jmammal/gyv073

    Article  Google Scholar 

  • Gervais P (1869) Mémoire sur les formes cérébrales propres aux édentés vivants et fossiles. Nouv Arch Mus Hist Nat Paris 5:1–56

    Google Scholar 

  • Gibb GC, Condamine, FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar, HN, Delsuc, F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol 33:621–642. https://doi.org/10.1093/molbev/msv250

    Article  CAS  PubMed  Google Scholar 

  • Gillette DD, Ray CE (1981) Glyptodonts of North America. Smithson Contrib Paleobiol 40:1–255. https://doi.org/10.5479/SI.00810266.40.1

    Article  Google Scholar 

  • Herrera CMR, Powell JE, Esteban GI, del Papa C (2017) A new Eocene dasypodid with caniniforms (Mammalia, Xenarthra, Cingulata) from Northwest Argentina. J Mamm Evol 24:275–288. https://doi.org/10.1007/s10914-016-9345-x

    Article  Google Scholar 

  • Huxley TH (1865) II. On the osteology of the genus Glyptodon. Philos Trans R Soc Lond 155:31–70. https://doi.org/10.1098/RSTL.1865.0002

    Article  Google Scholar 

  • Le Verger K, González Ruiz L R, Billet G (2021) Comparative anatomy and phylogenetic contribution of intracranial osseous canals and cavities in armadillos and glyptodonts (Xenarthra, Cingulata). J Anat 239(6):1473–1502. https://doi.org/10.1111/joa.13512

  • Lydekker R (1894) Contribuciones al conocimiento de los vertebrados fósiles de la Argentina. Part II. An Mus La Plata 2:1–248

  • Machado FA, Marroig G, Hubbe A (2022) The pre-eminent role of directional selection in generating extreme morphological change in glyptodonts (Cingulata; Xenarthra). Proc R Soc B 289:20212521. https://doi.org/10.1098/rspb.2021.2521

    Article  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York

    Google Scholar 

  • Macrini TE (2006) The evolution of endocranial space in mammals and non-mammalian cynodonts. Dissertation, The University of Texas

  • Macrini TE, Rougier GW, Rowe T (2007a) Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat Record 290:875–892. https://doi.org/10.1002/ar.20551

    Article  Google Scholar 

  • Macrini TE, Rowe T, Vandenberg JL (2007b) Cranial endocasts from a growth series of Monodelphis domestica (Didelphidae, Marsupialia): A study of individual and ontogenetic variation. J Morphol 268:844–865. https://doi.org/10.1002/JMOR.10556

    Article  PubMed  Google Scholar 

  • Macrini TE, Flynn JJ, Croft DA, Wyss AR (2010) Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters. J Anat 216:600–610.

  • Martínez, G, Dozo MT, Vera B, Cerdeño E (2019) Paleoneurology, auditory region, and associated soft tissue inference in the late Oligocene notoungulates Mendozahippus fierensis and Gualta cuyana (Toxodontia) from central-western Argentina. J Vertebr Paleontol 39:1–19. https://doi.org/10.1080/02724634.2019.1725531

    Article  Google Scholar 

  • Mitchell KJ, Scanferla A, Soibelzon E, Bonini R, Ochoa J, Cooper A (2016) Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos. Mol Ecol 25:3499–3508. https://doi.org/10.1111/MEC.13695

  • Núñez Blasco A, Zurita AE;, Miño Boilini AR, Bonini RA, Cuadrelli F (2021) The glyptodont Eleutherocercus solidus from the late Neogene of north-western Argentina: Morphology, chronology, and phylogeny. Acta Palaeontol Pol 66:79–99.

    Google Scholar 

  • O’Leary MA (2010) An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull Am Mus Nat Hist 335:1–206. https://doi.org/10.1206/335.1

    Article  Google Scholar 

  • O’Leary MA, Bloch JI et al (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–667. https://doi.org/10.1126/science.1229237

    Article  CAS  PubMed  Google Scholar 

  • Orliac MJ, O’Leary MA (2016) The inner ear of Protungulatum (Pan-Euungulata, Mammalia). J Mamm Evol 23:337–352. https://doi.org/10.1007/s10914-016-9327-z

    Article  Google Scholar 

  • Orliac MJ, Argot C, Gilissen E (2012) Digital cranial endocast of Hyopsodus (Mammalia, “Condylarthra”): a case of Paleogene terrestrial echolocation? PLoS One 7:e30000. https://doi.org/10.1371/journal.pone.0030000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Padberg J (2017) Xenarthran nervous systems. In: Kaas JH, (ed) Evolution of Nervous Systems, 2nd Ed, vol. 2. Academic Press, Nashville, pp 383–412

  • Perini FA, Macrini TE, Flynn JJ, Bamba K, Ni X, Croft DA, Wyss AR (2022) Comparative endocranial anatomy, encephalization, and phylogeny of Notoungulata (Placentalia, Mammalia). J Mamm Evol 29:369–394 https://doi.org/10.1007/s10914-021-09583-4

    Article  Google Scholar 

  • Porpino KDO, Fernicola JC, Bergqvist LP (2010) Revisiting the intertropical brazilian species Hoplophorus euphractus (Cingulata, Glyptodontoidea) and the phylogenetic affinities of Hoplophorus. J Vertebr Paleontol 30:911–927. https://doi.org/10.1080/02724631003765735

    Article  Google Scholar 

  • Porpino KDO, Fernicola JC, Cruz LE, Bergqvist LP (2014) The intertropical Brazilian species of Panochthus (Xenarthra, Cingulata, Glyptodontoidea): A reappraisal of their taxonomy and phylogenetic affinities. J Vertebr Paleontol 34:1165–1179 https://doi.org/10.1080/02724634.2014.863203

    Article  Google Scholar 

  • Prates L, Perez SI (2021) Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nat Commun 12:2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prothero DR (2017) Xenarthra, sloths, anteaters, and armadillos. In: The Princeton Field Guide to Prehistoric Mammals. Princeton University Press, New Jersey, pp 51–57. https://doi.org/10.1515/9781400884452

  • Quiñones SI, Miño-Boilini ÁR, Zurita AE, Contreras SA, Luna CA, Candela AM, Camacho M, Ercoli MD, Solís N, Brandoni D (2019) New records of Neogene Xenarthra (Mammalia) from eastern Puna (Argentina): diversity and biochronology. J Paleontol 93:1258–1275. https://doi.org/10.1017/jpa.2019.64

    Article  Google Scholar 

  • Superina M (2011) Husbandry of a pink fairy armadillo (Chlamyphorus truncatus): Case study of a cryptic and little known species in captivity. Zoo Biol 30:225–231. https://doi.org/10.1002/zoo.20334

    Article  PubMed  Google Scholar 

  • Tambusso PS, Fariña RA (2015a) Digital cranial endocast of Pseudoplohophorus absolutus (Xenarthra, Cingulata) and its systematic and evolutionary implications. J Vertebr Paleontol 35:e967853. https://doi.org/10.1080/02724634.2015.967853

    Article  Google Scholar 

  • Tambusso P, Fariña RA (2015b) Digital endocranial cast of Pampatherium humboldtii (Xenarthra, Cingulata) from the Late Pleistocene of Uruguay. Swiss J Palaeontol 134:109–116. https://doi.org/10.1007/s13358-015-0070-5

    Article  Google Scholar 

  • Tambusso PS, Varela L, Góis F, Moura JF, Villa C, Fariña RA (2021) The inner ear anatomy of glyptodonts and pampatheres (Xenarthra, Cingulata): Functional and phylogenetic implications. J S Am Earth Sci 108:103189. https://doi.org/10.1016/j.jsames.2021.103189

  • Tambusso PS, Góis F, Moura JF, Villa C, do Amaral RV (2023) Paleoneurology of extinct cingulates and insights into their inner ear anatomy. In: Dozo MT, Paulina-Carabajal A, Macrini TE, Walsh S (eds) Paleoneurology of Amniotes. Springer, Cham, Switzerland pp 711–736. https://doi.org/10.1007/978-3-031-13983-3_18

  • Treuting PM, Dintzis S, Montine KS (2017) Comparative Anatomy and Histology: a Mouse, Rat, and Human Atlas. Academic Press, Cambridge

  • Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35:343–366. https://doi.org/10.1666/0094-8373-35.3.343

    Article  Google Scholar 

  • Vizcaíno SF, De Iuliis G, Bargo MS (1998) Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny. J Mamm Evol 5:291–322. https://doi.org/10.1023/A:1020500127041

    Article  Google Scholar 

  • Vizcaíno SF, Farina RA, Bargo MS, De Iuliis G (2004) Functional and phylogenetic assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra). Ameghiniana 41:651–664

    Google Scholar 

  • Vizcaíno SF, Bargo MS, Cassini GH (2006) Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana 43:11–26

    Google Scholar 

  • Vizcaíno SF, Blanco RE, Bender JB, Milne N (2011a) Proportions and function of the limbs of glyptodonts. Lethaia 44:93–101. https://doi.org/10.1111/j.1502-3931.2010.00228.x

    Article  Google Scholar 

  • Vizcaíno SF, Cassini GH, Fernicola JC, Bargo MS (2011b) Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana 48:305–319 https://doi.org/10.5710/AMGH.v48i3(364)

    Article  Google Scholar 

  • Vizcaíno SF, Fernicola JC, Bargo MS (2012) Paleobiology of Santacrucian glyptodonts and armadillos (Xenarthra, Cingulata). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, pp 194–215

    Chapter  Google Scholar 

  • Wallace RB and Painter RLE (2013) Observations on the diet of the giant armadillo (Priodontes maximus Kerr, 1792). Edentata 14:85–86.

  • Witmer LM, Ridgely RC (2008) The paranasal air sinuses of predatory and armored dinosaurs (Archosauria: Theropoda and Ankylosauria) and their contribution to cephalic structure. Anat Record 291:1362–1388. https://doi.org/10.1002/ar.20794

    Article  Google Scholar 

  • Zurita AE, González Ruiz LR, Gómez-Cruz AJ, Arenas-Mosquera JE (2013a) The most complete known Neogene Glyptodontidae (Mammalia, Xenarthra, Cingulata) from northern South America: Taxonomic, paleobiogeographic, and phylogenetic implications. J Vertebr Paleontol 33:696–708. https://doi.org/10.1080/02724634.2013.726677

    Article  Google Scholar 

  • Zurita AE, Taglioretti M, Zamorano M, Scillato-Yané GJ, Luna C, Boh D, Saffer MM (2013b) A new species of Neosclerocalyptus Paula Couto (Mammalia: Xenarthra: Cingulata): The oldest record of the genus and morphological and phylogenetic aspects. Zootaxa 3721:387–398. https://doi.org/10.11646/zootaxa.3721.4.6

  • Zurita AE, Scillato-Yané GJ, Ciancio M, Ruiz (2016a) Los Glyptodontidae (Mammalia, Xenarthra): Historia biogeográfica y evolutiva de un grupo particular de mamíferos acorazados. Contrib Cient Mus Arg Cienc Nat “Bernardino Rivadavia” 6:249–262

  • Zurita AE, Taglioretti M, de los Reyes M, Cuadrelli F, Poire D (2016b) Regarding the real diversity of Glyptodontidae (Mammalia, Xenarthra) in the late Pliocene (Chapadmalalan Age/Stage) of Argentina. An Acad Bras Cienc 88:809–827. https://doi.org/10.1590/0001-3765201620150113

Download references

Acknowledgements

We are grateful to the personnel of CEUNIM and, in particular, to Amalia Perez, Alejandro Valda, and collaborators for assistance with CT scans. We thank Marcelo Reguero (MLP), Pablo Teta (MACNMa), and Laura Chornogubsky and Laura Cruz (MACN-Pv), who kindly gave access to the specimens under their care. This work was possible thanks to the facilities offered by the free digitals database available at https://www.digimorph.org (National Science Foundation Dissertation Improvement Grant (EB-0309369) to Timothy Rowe and Thomas E. Macrini) and https://www.morphosource.org (OVert Project: oVert TCN, NSF DBI1702421; MNHN digital repository: curator of mammals in Paleontology in Paris (Guillaume Billet, CR2P), Marta Bellato of the AST-RX platform who made the acquisition, and Kevin Le Verger for share micro-CT data). We also want to thank Laura Montaldo and Denise Campos for their language revision, and finally to the Editor in Chief Darin Croft, and the anonymous reviewers whose comments and corrections greatly enhanced this manuscript. This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPyCT, FONCyT), PICT-2016-2665 PICT-2019-3551, PICT-2021-I-A-00271, and Universidad Nacional de Luján (UNLu) CDD-CB 013/19, 14/B293 and CDD-CB 086/20, PI4 2020 to AT.

Funding

This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPyCT, FONCyT), PICT-2016–2665 PICT-2019–3551, PICT-2021-I-A-00271, and Universidad Nacional de Luján (UNLu) CDD-CB 013/19, 14/B293 and CDD-CB 086/20, PI4 2020 to AT.

Author information

Authors and Affiliations

Authors

Contributions

AT, GHC, AB, and JCF wrote the main manuscript text, GT made the microCT of MACN-Ma specimens, AT segmented the tomographies and prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Adrian Troyelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Below is the link to the electronic supplementary material.

Online Resource1 (PDF 70311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troyelli, A., Cassini, G.H., Tirao, G. et al. Endocranial cast anatomy of the Early Miocene glyptodont Propalaehoplophorus australis (Mammalia, Xenarthra, Cingulata) and its evolutionary implications. J Mammal Evol 30, 907–922 (2023). https://doi.org/10.1007/s10914-023-09689-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-023-09689-x

Keywords

Navigation