Abstract
With their past and current diversities, West Indian caviomorph rodents dominate the terrestrial mammalian fauna of the Caribbean archipelago. Many of these species have recently become extinct, including the emblematic giant forms known as Heptaxodontidae. The higher-level systematics and content of this family have been widely disputed over the last decades (i.e., membership in Cavioidea vs. Chinchilloidea vs. Octodontoidea). Here we analyzed the phylogenetic signal provided by several characters of the caviomorph inner ear to adress the phylogenetic affinities of the West Indian heptaxodontids. For this, we assembled an exhaustive taxonomic sampling (N = 100) of extant North and South American caviomorphs (including representatives of all families) and a wide array of West Indian forms among octodontoid echimyids (extant and extinct capromyines, as well as extinct heteropsomyines), and some heptaxodontid subfossil taxa such as Amblyrhiza, Clidomys, and Elasmodontomys. Geometric morphometrics and comparative phylogenetic methods were employed to explore shape differences of the inner ear and their potential systematic implications. Our results show that: (1) allometry is a major contributor to shape variation in the bony labyrinth; (2) shape variation bears a strong phylogenetic signal, providing diagnostic characters for Caviidae and Erethizontoidea; and (3) Amblyrhiza and Clidomys are morphologically closer to Chinchilloidea with which they have potential phylogenetic affinities. Elasmodontomys remains a problematic taxon as it exhibits inner ear features that are consistent with either Chinchilloidea or Octodontoidea, depending on how the allometric component is evaluated.
Similar content being viewed by others
Data availability
The landmark coordinates data and R code used for the GMM analyses are available on GitHub (https://github.com/Lea-dcnh/2023_Caviomorpha_InnerEar). The 3D surfaces models of Amblyrhiza, Clidomys, and Elasmodontomys are available on MorphoMuseuM (https://doi.org/10.18563/journal.m3.196). The remaining 3D surfaces will be used for further analyses and are available upon request to the corresponding author.
References
Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63(5):685–697. https://doi.org/10.1093/sysbio/syu030
Adams DC, Collyer ML, Kaliontzopoulou A, Baken E (2022) geomorph: geometric morphometric analyses of 2D and 3D landmark data. https://CRAN.R-project.org/package=geomorph
Alloing-Séguier L, Sánchez-Villagra MR, Lee MSY, Lebrun R (2013) The bony labyrinth in diprotodontian marsupial mammals: diversity in extant and extinct forms and relationships with size and phylogeny. J Mammal Evol 20(3):191–198. https://doi.org/10.1007/s10914-013-9228-3
Álvarez A, Arévalo RLM, Verzi DH (2017) Diversification patterns and size evolution in caviomorph rodents. Biol J Linn Soc 121(4):907–922. https://doi.org/10.1093/biolinnean/blx026
Álvarez A, Pérez SI, Verzi DH (2011) Ecological and phylogenetic influence on mandible shape variation of South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linn Soc 102(4):828–837. https://doi.org/10.1111/j.1095-8312.2011.01622.x
Anthony HE (1916) Preliminary report on fossil mammals from Porto Rico, with descriptions of a new genus of ground sloth and two new genera of hystricomorph rodents. Ann N Y Acad Sci 27(1):193–203. https://doi.org/10.1111/j.1749-6632.1916.tb55186.x
Anthony HE (1917) New fossil rodents from Porto Rico; with additional notes on Elasmodontomys obliquus Anthony and Heteropsomys insulans Anthony. Bull Amer Mus Nat Hist 37(4):183–189
Anthony HE (1918) The indigenous land mammals of Porto Rico, living and extinct. Mem Am Mus Nat Hist 2:331–435
Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B 279(1732):1319–1326. https://doi.org/10.1098/rspb.2011.1732
Arnal M, Vucetich MG (2015) Main radiation events in Pan-Octodontoidea (Rodentia, Caviomorpha). Zool J Linn Soc 175(3):587–606. https://doi.org/10.1111/zoj.12288
Arnaudo M, Arnal M, Ekdale EG (2020) The auditory region of a caviomorph rodent (Hystricognathi) from the early Miocene of Patagonia (South America) and evolutionary considerations. J Vertebr Paleontol 40(2):e1777557. https://doi.org/10.1080/02724634.2020.1777557
Baken EK, Collyer ML, Kaliontzopoulou A, Adams DC (2021) geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol Evol 12(12):2355–2363. https://doi.org/10.1111/2041-210X.13723
Benoit J, Essid EM, Marzougui W, Khayati Ammar H, Lebrun R, Tabuce R, Marivaux L (2013) New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: evidence from three primate petrosals from the Eocene of Chambi, Tunisia. J Hum Evol 65(5):551–572. https://doi.org/10.1016/j.jhevol.2013.06.014
Biknevicius AR, McFarlane DA, MacPhee RDE (1993) Body size in Amblyrhiza inundata (Rodentia, Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. Am Mus Novit 3079:1–25
Billet G, de Muizon C, Schellhorn R, Ruf I, Ladevèze S, Bergqvist L (2015a) Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia). Zool J Linn Soc 173(4):956–987. https://doi.org/10.1111/zoj.12219
Billet G, Germain D, Ruf I, de Muizon C, Hautier L (2013) The inner ear of Megatherium and the evolution of the vestibular system in sloths. J Anat 223(6):557–567. https://doi.org/10.1111/joa.12114
Billet G, Hautier L, Asher RJ, Schwarz C, Crumpton N, Martin T, Ruf I (2012) High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc R Soc B 279(1744):3932–3939. https://doi.org/10.1098/rspb.2012.1212
Billet G, Hautier L, Lebrun R (2015b) Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny. J Mammal 96(4):658–672. https://doi.org/10.1093/jmammal/gyv074
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Boivin M, Marivaux L, Antoine P-O (2019a) L’apport du registre paléogène d’Amazonie sur la diversification initiale des Caviomorpha (Hystricognathi, Rodentia) : implications phylogénétiques, macroévolutives et paléobiogéographiques. Geodiversitas 41(4):143–245. https://doi.org/10.5252/geodiversitas2019v41a4
Boivin M, Marivaux L, Salas-Gismondi R, Vieytes EC, Antoine P-O (2019b) Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia). J Mammal Evol 26(3):389–406. https://doi.org/10.1007/s10914-018-9430-4
Bonferroni CE (1936) Teoria Statistica delle Slassi e Calcolo delle Probabilita. Libreria Internazionale Seeber, Firenze
Bookstein FL (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge
Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1(3):225–243. https://doi.org/10.1016/S1361-8415(97)85012-8
Boscaini A, Iurino DA, Billet G, Hautier L, Sardella R, Tirao G, Gaudin TJ, Pujos F (2018) Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina. Sci Nat 105(3):28. https://doi.org/10.1007/s00114-018-1548-y
Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko null, Saptomo EW, Due RA (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431(7012):1055–1061. https://doi.org/10.1038/nature02999
Buckley M, Harvey VL, Orihuela J, Mychajliw AM, Keating JN, Milan JNA, Lawless C, Chamberlain AT, Egerton VM, Manning PL (2020) Collagen sequence analysis reveals evolutionary history of extinct West Indies Nesophontes (island-shrews). Mol Biol Evol 37(10):2931–2943. https://doi.org/10.1093/molbev/msaa137
Candela AM (2002) Lower deciduous tooth homologies in Erethizontidae [Rodentia, Hystricognathi]: Evolutionary significance. Acta Palaeontol Pol 47(4):717–723
Candela AM, Rasia LL (2012) Tooth morphology of Echimyidae (Rodentia, Caviomorpha): homology assessments, fossils, and evolution. Zool J Linn Soc 164(2):451–480. https://doi.org/10.1111/j.1096-3642.2011.00762.x
Carvalho G a. S, Salles LO (2004) Relationships among extant and fossil echimyids (Rodentia: Hystricognathi). Zool J Linn Soc 142(4):445–477. https://doi.org/10.1111/j.1096-3642.2004.00150.x
Cerio DG, Witmer LM (2019) Intraspecific variation and symmetry of the inner-ear labyrinth in a population of wild turkeys: implications for paleontological reconstructions. PeerJ 7:e7355. https://doi.org/10.7717/peerj.7355
Cooke SB, Crowley BE (2018) Deciphering the isotopic niches of now-extinct Hispaniolan rodents. J Vertebr Paleontol 38(5):e1510414. https://doi.org/10.1080/02724634.2018.1510414
Cooke SB, Rosenberger AL, Turvey ST (2011) An extinct monkey from Haiti and the origins of the Greater Antillean primates. Proc Nat Acad Sci USA 108(7):2699–2704. https://doi.org/10.1073/pnas.1009161108
Costeur L (2014) The petrosal bone and inner ear of Micromeryx flourensianus (Artiodactyla, Moschidae) and inferred potential for ruminant phylogenetics. Zitteliana B 32:99–114. https://doi.org/10.5282/ubm/epub.22390
Courcelle M, Tilak M-K, Leite YLR, Douzery EJP, Fabre P-H (2019) Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol Biol Evol 136:241–253. https://doi.org/10.1016/j.ympev.2019.03.007
Darwin C (1859) On The Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. John Murray, London
Davalos L, Turvey ST (2012) West Indian mammals: The old, the new, and the recently extinct. In: Patterson BD, Costa LP (eds) Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago.
del Río J, Aristide L, dos Reis SF, dos Santos TMP, Lopes RT, Pérez SI (2021) Allometry, function and shape diversification in the inner ear of platyrrhine primates. J Mammal Evol 28(1):135–143. https://doi.org/10.1007/s10914-019-09490-9
Delsuc F, Kuch M, Gibb GC, Karpinski E, Hackenberger D, Szpak P, Martínez JG, Mead JI, McDonald HG, MacPhee RDE, Billet G, Hautier L, Poinar HN (2019) Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr Biol 29(12):2031–2042. https://doi.org/10.1016/j.cub.2019.05.043
DeSalle R (2009) Molecular tooth decay. PLoS Genet 5(9):e1000655. https://doi.org/10.1371/journal.pgen.1000655
Ekdale EG (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8(6):e66624. https://doi.org/10.1371/journal.pone.0066624
Ekdale EG (2016) Morphological variation among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti). J Morphol 277(12):1599–1615. https://doi.org/10.1002/jmor.20610
Emmons LH (2005) A revision of the genera of arboreal Echimyidae (Rodentia: Echimyidae, Echimyinae), with descriptions of two new genera. In: Lacey EA, Myers P (eds) Mammalian Diversification: From Chromosomes to Phylogeography. University of California Publications in Zoology, Berkeley, pp 247–310
Emmons LH, Leite YLR, Patton JL (2015) Family Echimyidae. In: Pardiñas UF, D’Elía G, Patton JL (eds) Mammals of South America, Volume 2: Rodents. University of Chicago Press, Chicago, pp 877–1022
Evin A, Cucchi T, Cardini A, Vidarsdottir US, Larson G, Dobney K (2013) The long and winding road: identifying pig domestication through molar size and shape. J Archaeol Sci 40(1):735–743. https://doi.org/10.1016/j.jas.2012.08.005
Fabre P-H, Galewski T, Tilak M, Douzery EJP (2013) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zool Scr 42(2):117–134. https://doi.org/10.1111/j.1463-6409.2012.00572.x
Fabre P-H, Hautier L, Dimitrov D, Douzery EJP (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12(1):88. https://doi.org/10.1186/1471-2148-12-88
Fabre P-H, Hautier L, Douzery EJP (2015) A synopsis of rodent molecular phylogenetics, systematics and biogeography. In: Hautier L, Cox PG (eds) Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press, Cambridge, pp 19–69
Fabre P-H, Upham NS, Emmons LH, Justy F, Leite YLR, Carolina Loss A, Orlando L, Tilak M-K, Patterson BD, Douzery EJP (2017) Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Mol Biol Evol 34(3):613–633. https://doi.org/10.1093/molbev/msw261
Fabre P-H, Vilstrup JT, Raghavan M, Der Sarkissian C, Willerslev E, Douzery EJP, Orlando L (2014) Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biol Lett 10(7):20140266. https://doi.org/10.1098/rsbl.2014.0266
Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15
Ferreira-Cardoso S, Billet G, Gaubert P, Delsuc F, Hautier L (2020) Skull shape variation in extant pangolins (Pholidota: Manidae): allometric patterns and systematic implications. Zool J Linn Soc 188(1):255–275. https://doi.org/10.1093/zoolinnean/zlz096
Flemming C, MacPhee RDE (1999) Redetermination of holotype of Isolobodon portoricensis (Rodentia, Capromyidae): with notes on Recent mammalian extinctions in Puerto Rico. Am Mus Novit 3278:1–11
Ford SM (1990) Platyrrhine evolution in the West Indies. J Hum Evol 19(1):237–254. https://doi.org/10.1016/0047-2484(90)90018-7
Foster JB (1964) Evolution of mammals on islands. Nature 202(4929):234–235. https://doi.org/10.1038/202234a0
Geisler JH, Luo Z (1996) The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J Paleontol 70(6):1045–1066
Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B Methodol 53(2):285–339
Grohé C, Tseng ZJ, Lebrun R, Boistel R, Flynn JJ (2016) Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J Anat 228(3):366–383. https://doi.org/10.1111/joa.12421
Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24(1):103–109. https://doi.org/10.4404/hystrix-24.1-6292
Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J Morphol 273(12):1319–1337. https://doi.org/10.1002/jmor.20061
Hautier L, Lebrun R, Saksiri S, Michaux J, Vianey-Liaud M, Marivaux L (2011) Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS ONE 6(4):e18698. https://doi.org/10.1371/journal.pone.0018698
Hennekam JJ, Benson RBJ, Herridge VL, Jeffery N, Torres-Roig E, Alcover JA, Cox PG (2020) Morphological divergence in giant fossil dormice. Proc R Soc B 287(1938):20202085. https://doi.org/10.1098/rspb.2020.2085
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70
Horovitz I, MacPhee RDE (1999) The Quaternary Cuban platyrrhine Paralouatta varonai and the origin of Antillean monkeys. J Hum Evol 36(1):33–68. https://doi.org/10.1006/jhev.1998.0259
Hoyte D a. N (1961) The postnatal growth of the ear capsule in the rabbit. Am J Anat 108(1):1–16. https://doi.org/10.1002/aja.1001080102
Janssens LA, Gunz P, Stenger TE, Fischer MS, Boone M, Stoessel A (2019) Bony labyrinth shape differs distinctively between modern wolves and dogs. Zoomorphology 138(3):409–417. https://doi.org/10.1007/s00435-019-00445-5
Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204(2):71–92. https://doi.org/10.1111/j.1469-7580.2004.00250.x
Kerber L, Ferreira JD, Negri FR (2019) A reassessment of the cranial morphology of Neoepiblema acreensis (Rodentia: Chinchilloidea), a Miocene rodent from South America. J Morphol 280(12):1821–1838. https://doi.org/10.1002/jmor.21067
Klingenberg CP (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226(3):113–137. https://doi.org/10.1007/s00427-016-0539-2
Kramarz AG, Vucetich MG, Arnal M (2013) A new early miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution. J Mammal Evol 20(3):249–261. https://doi.org/10.1007/s10914-012-9215-0
Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26. https://doi.org/10.18637/jss.v028.i05
Larue RTHM, Timmeren JE van, Jong EEC de, Feliciani G, Leijenaar RTH, Schreurs WMJ, Sosef MN, Raat FHPJ, Zande FHR van der, Das M, Elmpt W van, Lambin P (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56(11):1544–1553. https://doi.org/10.1080/0284186X.2017.1351624
Lebrun R (2018) MorphoDig, an open-source 3D freeware dedicated to biology. https://github.com/morphomuseum/MorphoDig
Lebrun R, León MPD, Tafforeau P, Zollikofer C (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216(3):368–380. https://doi.org/10.1111/j.1469-7580.2009.01177.x
Lebrun R, Perier A, Masters J, Marivaux L, Couette S (2021) Lower levels of vestibular developmental stability in slow-moving than fast-moving primates. Symmetry 13(12):2305. https://doi.org/10.3390/sym13122305
Lindenlaub T, Burda H (1993) Morphometry of the vestibular organ in neonate and adult African mole-rats Cryptomys species. Anat Embryol 188(2):159–162. https://doi.org/10.1007/BF00186249
Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125(2):310–316. https://doi.org/10.1086/284343
Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32(10):1683–1699. https://doi.org/10.1111/j.1365-2699.2005.01314.x
Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457(7231):830–836. https://doi.org/10.1038/nature07893
MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton
MacPhee RDE (2009) Insulae infortunatae: establishing a chronology for late Quaternary mammal extinctions in the West Indies. In: Haynes G (ed) American Megafaunal Extinctions at the End of the Pleistocene. Springer Netherlands, Dordrecht, pp 169–193
MacPhee RDE (2011) Basicranial morphology and relationships of Antillean Heptaxodontidae (Rodentia, Ctenohystrica, Caviomorpha). Bull Amer Mus Nat Hist 2011(363):1–70. https://doi.org/10.1206/0003-0090-363.1.1
MacPhee RDE, Flemming C (2003) A possible heptaxodontine and other caviidan rodents from the Quaternary of Jamaica. Am Mus Novit 3422:1–42
MacPhee RDE, Horovitz I (2004) New craniodental remains of the Quaternary Jamaican monkey Xenothrix mcgregori (Xenotrichini, Callicebinae, Pitheciidae), with a reconsideration of the Aotus hypothesis. Am Mus Novit 3434:1–51. https://doi.org/10.1206/00030082(2004)434
MacPhee RDE, Iturralde-Vinent M (1994) First Tertiary land mammal from Greater Antilles: an early Miocene sloth (Xenarthra, Megalonychidae) from Cuba. Am Mus Novit 3094:1–13
MacPhee RDE, Iturralde-Vinent MA, Gaffney ES (2003) Domo de Zaza, an early Miocene vertebrate vocality in South-Central Cuba, with notes on the tectonic evolution of Puerto Rico and the Mona passage. Am Mus Novit 3394:1–42. https://doi.org/10.1206/0003-0082(2003)394
MacPhee RDE, White JL, Woods CA (2000) New megalonychid sloths (Phyllophaga, Xenarthra) from the Quaternary of Hispaniola. Am Mus Novit 3303:1–32. https://doi.org/10.1206/0003-0082(2000)3303
Mammal Diversity Database (2022) Mammal Diversity Database (Version 1.10) . Zenodo
Marivaux L, Boivin M (2019) Emergence of hystricognathous rodents: Palaeogene fossil record, phylogeny, dental evolution and historical biogeography. Zool J Linn Soc 187(3):929–964. https://doi.org/10.1093/zoolinnean/zlz048
Marivaux L, López LWV, Boivin M, Da Cunha L, Fabre P-H, Joannes-Boyau R, Maincent G, Münch P, Stutz NS, Vélez-Juarbe J, Antoine P-O (2022) Incisor enamel microstructure of West Indian caviomorph hystricognathous rodents (Octodontoidea and Chinchilloidea). J Mammal Evol 29(4):969–995. https://doi.org/10.1007/s10914-022-09631-7
Marivaux L, Vélez-Juarbe J, Merzeraud G, Pujos F, Viñola-López LW, Boivin M, Santos-Mercado H, Cruz EJ, Grajales A, Padilla J, Vélez-Rosado KI, Philippon M, Léticée J-L, Münch P, Antoine P-O (2020) Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies. Proc R Soc B 287(1920):20192806. https://doi.org/10.1098/rspb.2019.2806
Marivaux L, Vélez-Juarbe J, Viñola-López LW, Fabre P-H, Pujos F, Santos-Mercado H, Cruz EJ, Grajales Pérez AM, Padilla J, Vélez-Rosado KI, Cornée J-J, Philippon M, Münch P, Antoine P-O (2021) An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico. Pap Palaeontol 7:2021–2039. https://doi.org/10.1002/spp2.1388
Marivaux L, Vianey-Liaud M, Jaeger J-J (2004) High-level phylogeny of early Tertiary rodents: dental evidence. Zool J Linn Soc 142(1):105–134. https://doi.org/10.1111/j.1096-3642.2004.00131.x
Marivaux L, Vianey-Liaud M, Welcomme J-L, Jaeger J-J (2002) The role of Asia in the origin and diversification of hystricognathous rodents. Zool Scr 31(3):225–239. https://doi.org/10.1046/j.1463-6409.2002.00074.x
Martin T (1992) Schmelzstruktur in den Inzisiven alt-und neuweltlicher hystricognather Nagetiere. Palaeovertebrata Mém extra 1992:1–168
Martin T (1994a) African origin of caviomorph rodents is indicated by incisor enamel microstructure. Paleobiology 20(1):5–13. https://doi.org/10.1017/S009483730001109X
Martin T (1994b) On the systematic position of Chaetomys subspinosus (Rodentia: Caviomorpha) based on evidence from the incisor enamel microstructure. J Mammal Evol 2(2):117–131. https://doi.org/10.1007/BF01464364
Martin T (1997) Incisor enamel microstructure and systematics in rodents. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 163–175
Martínez-Monedero R, Niparko JK, Aygun N (2011) Cochlear coiling pattern and orientation differences in cochlear implant candidates. Otol Neurotol 32(7):1086–1093. https://doi.org/10.1097/MAO.0b013e31822a1ee2
Mason MJ, Cornwall HL, Smith ESJ (2016) Ear structures of the naked mole-rat, Heterocephalus glaber, and its relatives (Rodentia: Bathyergidae). PLoS ONE 11(12):e0167079. https://doi.org/10.1371/journal.pone.0167079
McFarlane DA (1999) Late Quaternary fossil mammals and last occurrence dates from caves at Barahona, Puerto Rico. Caribb J Sci 35(3):238–248
McFarlane DA, MacPhee RDE, Ford DC (1998) Body size variability and a Sangamonian extinction model for Amblyrhiza, a West Indian megafaunal rodent. Quat Res 50(1):80–89
McFarlane DA, Vale A, Christenson K, Lundberg J, Atilles G, Lauritzen SE (2000) New specimens of late Quaternary extinct mammals from caves in Sánchez Ramirez Province, Dominican Republic. Caribb J Sci 36:163–166
McKenna MC, Bell SK (1997) Classification of Mammals above the Species Level. Columbia University Press, New York
Mennecart B, Costeur L (2016) Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. J Anat 229(3):422–435. https://doi.org/10.1111/joa.12487
Miller GS (1916) Bones of mammals from Indian sites in Cuba and Santo Domingo. Smithsonian Misc Collect 66(12):1–10
Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4(10):e321. https://doi.org/10.1371/journal.pbio.0040321
Morgan CC, Vassallo A, Antenucci D (2015) The postcranial skeleton of caviomorphs: morphological diversity, adaptations and patterns. In: Vassallo A, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 167–198
Morgan GS, MacPhee RDE, Woods R, Turvey ST (2019) Late Quaternary fossil mammals from the Cayman Islands, West Indies. Bull Amer Mus Nat Hist 428:1–79
Morgan GS, Woods CA (1986) Extinction and the zoogeography of West Indian land mammals. Biol J Linn Soc 28(1–2):167–203. https://doi.org/10.1111/j.1095-8312.1986.tb01753.x
Mourlam MJ, Orliac MJ (2017) Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Curr Biol 27(12):1776–1781.e9. https://doi.org/10.1016/j.cub.2017.04.061
Orihuela J, Viñola-López LW, Jiménez Vázquez O, Mychajliw AM, Hernández de Lara O, Lorenzo L, Soto-Centeno JA (2020) Assessing the role of humans in Greater Antillean land vertebrate extinctions: New insights from Cuba. Quat Sci Rev 249:106597. https://doi.org/10.1016/j.quascirev.2020.106597
Orliac MJ, Benoit J, O’Leary MA (2012) The inner ear of Diacodexis, the oldest artiodactyl mammal. J Anat 221(5):417–426. https://doi.org/10.1111/j.1469-7580.2012.01562.x
Panciroli E, Janis C, Stockdale M, Martín-Serra A (2017) Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals. J Morphol 278(10):1333–1353. https://doi.org/10.1002/jmor.20716
Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. https://doi.org/10.1093/bioinformatics/btg412
Patterson B, Wood AE (1982) Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bull Amer Mus Nat Hist 149:371–543
Perier A, Lebrun R, Marivaux L (2016) Different level of intraspecific variation of the bony labyrinth morphology in slow- versus fast-moving primates. J Mammal Evol 23(4):353–368. https://doi.org/10.1007/s10914-016-9323-3
Presslee S, Slater GJ, Pujos F, Forasiepi AM, Fischer R, Molloy K, Mackie M, Olsen JV, Kramarz A, Taglioretti M, Scaglia F, Lezcano M, Lanata JL, Southon J, Feranec R, Bloch J, Hajduk A, Martin FM, Salas Gismondi R, Reguero M, de Muizon C, Greenwood A, Chait BT, Penkman K, Collins M, MacPhee RDE (2019) Palaeoproteomics resolves sloth relationships. Nat Ecol Evol 3(7):1121–1130. https://doi.org/10.1038/s41559-019-0909-z
R Core Team (2021) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M (2012) Ecological specialization in fossil mammals explains Cope’s rule. Am Nat 179(3):328–337. https://doi.org/10.1086/664081
Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Rinderknecht A, Blanco RE (2008) The largest fossil rodent. Proc R Soc B 275(1637):923–928. https://doi.org/10.1098/rspb.2007.1645
Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39(1):40–59. https://doi.org/10.2307/2992207
Rosenberger AL (2011) Evolutionary morphology, platyrrhine evolution, and systematics. Anat Rec 294(12):1955–1974. https://doi.org/10.1002/ar.21511
Rosenberger AL (2013) Fallback foods, preferred foods, adaptive zones, and primate origins. Am J Primatol 75(9):883–890. https://doi.org/10.1002/ajp.22162
Sánchez-Villagra MR, Schmelzle T (2007) Anatomy and development of the bony inner ear in the woolly opossum, Caluromys philander (Didelphimorphia, Marsupialia). Mastozool Neotrop 14(1):53–60.
Schwab JA, Kriwet J, Weber GW, Pfaff C (2019) Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry. Sci Rep 9(1):70. https://doi.org/10.1038/s41598-018-37106-4
Schweizer AV, Lebrun R, Wilson LAB, Costeur L, Schmelzle T, Sánchez-Villagra MR (2017) Size variation under domestication: conservatism in the inner ear shape of wolves, dogs and dingoes. Sci Rep 7(1):13330. https://doi.org/10.1038/s41598-017-13523-9
Silva Taboada G, Suárez Duque W, Díaz Franco S (2007) Compendio de los Mamíferos Terrestres Autóctonos de Cuba: vivientes y extinguidos. Ediciones Boloña, Cuba, La Habana
Simpson GG (1945) The principles of classification and a classification of mammals. Bull Amer Mus Nat Hist 85:1–350.
Spoor F, Garland T, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Nat Acad Sci USA 104(26):10808–10812. https://doi.org/10.1073/pnas.0704250104
Steadman DW, Takano OM (2013) A late-Holocene bird community from Hispaniola: refining the chronology of vertebrate extinction in the West Indies. The Holocene 23(7):936–94. https://doi.org/10.1177/0959683613479683
Thean T, Kardjilov N, Asher RJ (2017) Inner ear development in cetaceans. J Anat 230(2):249–261. https://doi.org/10.1111/joa.12548
Turvey ST, Grady FV, Rye P (2006) A new genus and species of ‘giant hutia’ (Tainotherium valei) from the Quaternary of Puerto Rico: an extinct arboreal quadruped? J Zool 270(4):585–594. https://doi.org/10.1111/j.1469-7998.2006.00170.x
Turvey ST, Kennerley RJ, Nuñez-Miño JM, Young RP (2017) The Last Survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J Mammal 98(4):918–936. https://doi.org/10.1093/jmammal/gyw154
Upham NS, Patterson BD (2012) Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Mol Biol Evol 63(2):417–429. https://doi.org/10.1016/j.ympev.2012.01.020
Upham NS, Patterson BD (2015) Evolution of the caviomorph rodents: a complete phylogeny and timetree of living genera. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 63–120
Upham NS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol 17(12):e3000494. https://doi.org/10.1371/journal.pbio.3000494
van den Hoek Ostende LW (2018) Cladistics and insular evolution, an unfortunate marriage? Another tangle in the Deinogalerix analysis of Borrani et al. (2017). Cladistics 34(6):708–713. https://doi.org/10.1111/cla.12238
Van der Geer A, Lyras G, De Vos J, Dermitzakis M (2011) Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands. John Wiley & Sons, Chichester
Vassallo A (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: Octodontidae). J Zool 244(3):415–427. https://doi.org/10.1111/j.1469-7998.1998.tb00046.x
Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer-Verlag, New York
Verde Arregoitia LD, Teta P, D’Elía G (2020) Patterns in research and data sharing for the study of form and function in caviomorph rodents. J Mammal 101(2):604–612. https://doi.org/10.1093/jmammal/gyaa002
Verzi DH, Olivares AI, Morgan CC (2014) Phylogeny and evolutionary patterns of South American octodontoid rodents. Acta Palaeontol Pol 59(4):757–769. https://doi.org/10.4202/app.2012.0135
Vilela RV, Machado T, Ventura K, Fagundes V, de J Silva MJ, Yonenaga-Yassuda Y (2009) The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data. BMC Evol Biol 9(1):29. https://doi.org/10.1186/1471-2148-9-29
Viñola-López LW, Bloch JI, Almonte Milán JN, LeFebvre MJ (2022b) Endemic rodents of Hispaniola: biogeography and extinction timing during the Holocene. Quat Sci Rev 297:107828. https://doi.org/10.1016/j.quascirev.2022.107828
Viñola-López LW, Suárez EEC, Vélez-Juarbe J, Milan JNA, Bloch JI (2022a) The oldest known record of a ground sloth (Mammalia, Xenarthra, Folivora) from Hispaniola: evolutionary and paleobiogeographical implications. J Paleontol 96(3):684–691. https://doi.org/10.1017/jpa.2021.109
Voss RS, Angermann R (1997) Revisionary notes on neotropical porcupines (Rodentia, Erethizontidae). 1, Type material described by Olfers (1818) and Kuhl (1820) in the Berlin Zoological Museum. Am Mus Novit 3214:1–44
Vucetich MG, Arnal M, Deschamps CM, Pérez ME, Vieytes EC (2015) A brief history of caviomorph rodents as told by the fossil record. In: Vassallo A, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Buenos Aires, pp 11–62
Wallace AR (1880) Island Life: or, the Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates. Macmillan, London, UK
Ward DL, Schroeder L, Pomeroy E, Roy JE, Buck LT, Stock JT, Martin‐Gronert M, Ozanne SE, Silcox MT, Viola TB (2021) Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat Rec 304:2645–2660. https://doi.org/10.1002/ar.24601
Woods CA (1989) The biogeography of West Indian rodents. In: Woods CA (ed). Biogeography of the West Indies: Past, Present, and Future. Sandhill Crane Press, Gainesville, pp 741–798
Woods CA, Hermanson JW (1985) Myology of hystricognath rodents: an analysis of form, function, and phylogeny. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships among Rodents. Springer US, Boston, MA, pp 515–548
Woods CA, Howland EB (1979) Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. J Mammal 60(1):95–116. https://doi.org/10.2307/1379762
Woods CA, Paéz RB, Kilpatrick CW (2001) Insular patterns and radiations of West Indian rodents. In: Woods CA, Sergile FE (eds) Biogeography of the West Indies, 2nd edn. CRC Press, Boca Ratón, pp 335–353
Woods R, Barnes I, Brace S, Turvey ST (2021) Ancient DNA suggests single colonization and within-archipelago diversification of caribbean caviomorph rodents. Mol Biol Evol 38(1):84–95. https://doi.org/10.1093/molbev/msaa189
Woods R, Turvey ST, Brace S, MacPhee RDE, Barnes I (2018) Ancient DNA of the extinct Jamaican monkey Xenothrix reveals extreme insular change within a morphologically conservative radiation. Proc Nat Acad Sci USA 115(50):12769–12774. https://doi.org/10.1073/pnas.1808603115
Woods C (1984) Hystricognath rodents, in: Anderson, S, Knox Jones, J (Eds.), Orders and families of recent mammals of the world. John Wiley and Sons, New York, pp. 389–446
Acknowledgments
Thanks to B. Clark, V. Fernández, and R. P. Miguez for access to the mammal collections and the computed tomography facilities at the Natural History Museum of London. We thank the curators and collection managers at AMNH, NHM, CBGP, FLMNH, MNHN, USNM, and head of the Digital Imaging Division (FLMNH) for access to specimens and sometimes scanning for us. Thanks to Anne-Claire Fabre, Sérgio Ferreira Cardoso, and Quentin Martínez for their fruitful discussions and helping with the scanning of important specimens while they were visiting the Natural History Museum of London. Thanks to Andrés Rinderknecht for sharing his medical scan of Josephoartigasia monesi to attempt the extraction of its inner ear shape morphology. Marcelo R. Sánchez-Villagra, Alexandra Wegmann, Gabriel Aguirre Fernández, and Jorge D. Carrillo Briceño for helping us scanning the specimens housed at PIMUZ. We thank the 3D data repositories morphosource, DigiMorph, and their contributors. Three-dimensional data acquisitions were performed using the micro-computed tomography (μCT) facilities of the MRI platform member of the national infrastructure France-BioImaging supported by the French Agence Nationale de la Recherche (Grant ANR-10-INBS-04, “Investissements d’Avenir”), and those of the Laboratoire d’Excellence (LabEx) Centre Méditerranéen de l’Environnement et de la Biodiversité (LabEx CeMEB, ANR10-LABX-0004). Finally, we thank the two anonymous reviewers for their insightful comments that enhanced the final version of the manuscript. This is ISEM publication n° 2023-116 SUD.
Funding
This research was supported by the Synthesis of Systematic Resources (SYNTHESYS) project, which is financed by the European Community Research Infrastructure Action (FP7: Grants GB-TAF-5737, GB-TAF-6945, and GB-TAF-1316 to the National History Museum of London), by the French Agence Nationale de la Recherche (Grants DS10, ANR-17-CE02-0005 RHINOGRAD), the LabEx CEBA (ANR-10-LABX-25-01; projects PEPS, adaptation, adaptabilité SHREWNOSE, and EMERGENCE). This work was initiated in the framework of the GAARAnti project (ANR-17-CE31-0009).
Author information
Authors and Affiliations
Contributions
LDC, RL, LM and PHF conceived the study. LWVL, LK and PHF collected CT-scan data and LDC segmented and conducted morphometric analyses with assistance of LH, PHF and RL. LWVL, JVJ, POA, MB and LM collected and identified field specimens and provided paleontological information. LWVL, RDEM, LK, JVJ, POA, MB, LH and RL supplied specimens information, identifications and commentary on the manuscript. LDC, LM and PHF wrote the manuscript with inputs from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Da Cunha, L., Viñola-López, L.W., MacPhee, R.D.E. et al. The inner ear of caviomorph rodents: Phylogenetic implications and application to extinct West Indian taxa. J Mammal Evol 30, 1155–1176 (2023). https://doi.org/10.1007/s10914-023-09675-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10914-023-09675-3