Abstract
The debate regarding the evolutionary relationships of the extinct South American native ungulates (SANUs) to the major placental clades Afrotheria and Boreoeutheria is exciting and has profound implications for our understanding of their early diversification and paleobiogeography. Although this controversy has not yet proven resolvable using morphological evidence, paleoproteomic and ancient DNA analyses support that at least some SANUs (i.e., Litopterna and Notoungulata) are members of Boreoeutheria, closely related to Perissodactyla (the Panperissodactyla hypothesis). Here we present a critical assessment of a recently published morphology-based study that claims that: (1) some SANUs (i.e., Notoungulata, Astrapotheria, Pyrotheria, and Xenungulata) represent a monophyletic supraordinal group, the Sudamericungulata, closely related to the Afrotherian hyracoids; and (2) the remaining SANUs (i.e., Litopterna and Didolodontidae, placed in a separate taxon, Panameridiungulata) are boreoeutherian in origin. Because this proposal (hereafter, the Sudamericungulata - Panameridiungulata or S-P hypothesis) is based on an incongruously reduced sample of boreoeutherians (including only a single perissodactyl) and inadequate character sampling restricted to dental and mandibular traits, it cannot be regarded as a satisfactory test of SANU relationships. Moreover, the S-P hypothesis fails to recover monophyletic Boreoeutheria and/or Afrotheria, making it incompatible with all well-established hypotheses of placental diversification. We find that the introduction of molecular constraints forcing the monophyly of Boreoeutheria and Afrotheria produces new trees, all recovering Sudamericungulata and Panameridiungulata nested within Boreoeutheria. These results are consistent with our analyses using a corrected version of the S-P matrix. Although we acknowledge that boreoeutherian affinities have still not been conclusively demonstrated for all nominal SANUs, it is beyond argument that any further credible testing must be based on much more exhaustive surveys than are currently available.



Similar content being viewed by others
Data Availability
All data generated and analyzed during this study are included in the present published article and associated supplementary files.
References
Andrews CW (1906) A Descriptive Catalogue of the Tertiary Vertebrata of the Fayûm, Egypt. British Museum of Natural History, London
Asher RJ, Lehmann T (2008). Dental eruption in afrotherian mammals. BMC Biol 6:1–11
Asher RJ, Novacek MJ, Geisler JH (2003) Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J Mamm Evol 10:131–194
Asher RJ, Smith MR (2022) Phylogenetic signal and bias in paleontology. Syst Biol 71(4):986–1008
Avilla LS, Mothé D (2021) Out of Africa: a new Afrotheria lineage rises from extinct South American mammals. Front Ecol Evol 9:654302. https://doi.org/10.3389/fevo.2021.654302
Bai B, Meng J, Wang Y-Q, Wang H-B, Holbrook L (2017) Osteology of the middle Eocene ceratomorph Hyrachyus modestus (Mammalia, Perissodactyla). Bull Am Mus Nat Hist 413:1–68
Beck RM, Lee MS (2014). Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proc R Soc B 281:20141278
Bellott DW, Cho T-J, Hughes JF, Skaletsky H, Page DC (2018) Cost-effective high-throughput single-haplotype iterative mapping and sequencing for complex genomic structures. Nat Protoc 13:787–809
Billet G (2010) New observations on the skull of Pyrotherium (Pyrotheria, Mammalia) and new phylogenetic hypotheses on South American ungulates. J Mamm Evol 17:21–59
Billet G, Bardin J (2019) Serial homology and correlated characters in morphological phylogenetics: modeling the evolution of dental crests in placentals. Syst Biol 68:267–280
Billet G, Bardin J (2021) Segmental series and size: clade-wide investigation of molar proportions reveals a major evolutionary allometry in the dentition of placental mammals. Syst Biol 70:1101–1109
Billet G, Martin T (2011) No evidence for an afrotherian-like delayed dental eruption in South American notoungulates. Naturwissenschaften 98:509–517
Brocklehurst N, Benevento GL (2020). Dental characters used in phylogenetic analyses of mammals show higher rates of evolution, but not reduced independence. PeerJ 8: e8744. https://doi.org/10.7717/peerj.8744
Buckley M (2015) Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’. Proc R Soc B 282:20142671
Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, Fotakis A, Lyon D, Moreno-Mayar JV, Bukhsianidze M, Jersie-Christensen RR, Mackie M, Ginolhac A, Ferring R, Tappen M, Palkopoulou E, Dickinson MR, Stafford TW, Chan YL, Götherström A, Nathan SKSS, Heintzman PD, Kapp JD, Kirillova I, Moodley Y, Agusti J, Kahlke R-D, Kiladze G, Martínez-Navarro N, Liu S, Sandoval Velasco M, Sinding M-HS, Kelstrup CD, Allentoft ME, Orlando L, Penkman K, Shapiro B, Rook L, Dalén L, Gilbert MTP, Olsen JV, Lordkipanidze D, Eske Willerslev E (2019) Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574:103–107
Carrillo JD, Asher RJ (2017) An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina. Palaeontol Electron 20.2.34A:1–33
Ciancio MR, Castro MC, Galliari FC, Carlini AA, Asher RJ (2012) Evolutionary implications of dental eruption in Dasypus (Xenarthra). J Mammal Evol 19:1–8
Congreve CR, Lamsdell JC (2016) Implied weighting and its utility in palaeontological datasets: A study using modelled phylogenetic matrices. Palaeontology 59(3):447–462
Ezcurra MD, Agnolín FL (2012) A new global palaeobiogeographical model for the Late Mesozoic and Early Tertiary. Syst Biol 61:553–566
Gaudry A (1904) Fossiles de Patagonie. Dentition de quelques mammifères. Mémoires de la Société Géologique de France. Paléontologie 12:5–43
Gazin LC (1968) A study of the Eocene condylarthran mammal Hyopsodus. Smithson Misc Coll 153:1–90
Gheerbrant E, Sudre J, Tassy P, Amaghzaz M, Bouya B, Iarochène M (2005) Nouvelles données sur Phosphatherium escuilliei (Mammalia, Proboscidea) de l’Éocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes. Geodiversitas 27(2):239–333
Gheerbrant E, Amaghzaz M, Bouya B, Goussard F, Letenneur C (2014) Ocepeia (Middle Paleocene of Morocco): the oldest skull of an afrotherian mammal. PLoS ONE 9(2): e89739. https://doi.org/10.1371/journal.pone.0089739
Gingerich PD, Domning DP, Blane CE, Uhen MD (1994). Cranial morphology of Protosiren fraasi (Mammalia, Sirenia) from the middle Eocene of Egypt: a new study using computed tomography. Contrib Mus Paleontol Univ Mich 29:41–67
Goloboff PA (1993) Estimating character weights during tree search. Cladistics 9: 83–91
Goloboff PA, Carpenter JM, Arias JS, Esquivel DRM (2008) Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24(5):758–773
Goswami A, Smaers JB, Soligo C, Polly PD (2014). The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil Trans R Soc B369: 20130254
Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41:e129
Halliday TJD, Upchurch P, Goswami A (2017) Resolving the relationships of Paleocene placental mammals. Biol Rev 92:521–550. https://doi.org/10.1111/brv.12242
Halliday TJD, dos Reis M, Tamuri AU, Ferguson-Gow H, Yang Z, Goswami A (2019) Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proc R Soc B 286:20182418.
Kramarz AG, Bond M (2008) Revision of Parastrapotherium (Mammalia, Astrapotheria) and other Deseadan astrapotheres of Patagonia. Ameghiniana 45:537–551
Kramarz AG, Bond M (2014a) Reconstruction of the dentition of Propyrotherium Ameghino, 1901 (Mammalia, Pyrotheria). Taxonomic and phylogenetic implications. J Vert Paleontol 34:434–443
Kramarz AG, Bond M (2014b) Critical revision of the alleged delayed dental eruption in South American “ungulates”. Mamm Biol 79:170–175
Kramarz AG, Bond M, Forasiepi A (2010) New remains of Astraponotus (Mammalia, Astrapotheria) and considerations on the astrapothere cranial evolution. Paläontol Z 85:185–200
Kramarz AG, Bond M, Rougier GW (2017) Re-description of the auditory region of the putative basal astrapothere (Mammalia) Eoastrapostylops riolorense Soria and Powell, 1981. Systematic and phylogenetic considerations. Ann Carnegie Mus 84:95–164
Leidy J (1873) Contributions to the extinct vertebrate fauna of the western territories. Rep U S Geol Surv Territ 1:14–358
Loomis FB (1914) The Deseado Formation of Patagonia. Rumford Press, Concord, N. H.
MacPhee RDE, Hernandez del Pino S, Kramarz A, Forasiepi A, Bond M, Sulser B (2021) Cranial morphology and phylogenetic relationships of Trigonostylops wortmani, an Eocene South American native ungulate. Bull Am Mus Nat Hist 449:1–183
McKenna, M. C.1975. Towards a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Springer, Boston, pp 21–46
Muizon C de, Billet G, Argot C, Ladevèze S, Goussard F (2015) Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology. Geodiversitas 37:397–634
Muizon C de, Cifelli RL (2000) The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): Implications on the origin of the South American ungulates. Geodiversitas 22:47–150
Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351. https://doi.org/10.1126/science.1067179
O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-KPg radiation of placentals. Science 339:662–66
Pascual R, Vucetich MG (1978) Los primeros mamíferos (Notoungulata, Henricosbornidae) de la Formación Mealla (Grupo Salta, Subgrupo Santa Bárbara) sus implicancias filogenéticas, taxonómicas y cronológicas. Ameghiniana 15:366–390
Paula Couto C de (1952) Fossil mammals from the beginning of the Cenozoic in Brazil. Notoungulata. Am Mus Novit 1568:1–16
Prevosti FJ, Chemisquy MA (2010) The impact of missing data on real morphological phylogenies: influence of the number and distribution of missing entries. Cladistics 26:326–339. https://doi.org/10.1111/j.1096-0031.2009.00289.x
Radinsky LB (1967) Hyrachyus, Chasmotherium and the early evolution of helaletid tapiroids. Am Mus Novit 2316:1–23
Reig OA (1981) Teoría del origen y desarrollo de la fauna de mamíferos de América del Sur. Monogr Nat (Publ Mus Munic Cienc Nat “Lorenzo Scaglia”) 1:1-162
Rose KD, Holbrook LT, Kumar K, Rana RS, Ahrens HE, Dunn RH, Folie A, Jones KE, Smith T (2019) Anatomy, Relationships, and Paleobiology of Cambaytherium (Mammalia, Perissodactylamorpha, Anthracobunia) from the lower Eocene of western India. Soc Vert Paleontol Mem 20. J Vert Paleontol 39(6 sup):1–147
Roure B, Baurain D, Hervé P (2013) Impact of missing data on phylogenies inferred from empirical phylogenomic Data Sets. Mol Biol Evol 30:197–214. https://doi.org/10.1093/molbev/mss208
Sansom RS, Wills MA, Williams T (2017). Dental data perform relatively poorly in reconstructing mammal phylogenies: morphological partitions evaluated with molecular benchmarks. Syst Biol 66:813–822
Scott WB (1937) The Astrapotheria. Proc Am Phil Soc 77:300–393
Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1-181
Simpson GG (1948) The beginning of the age of mammals in South America. Part 1. Introduction. Systematics: Marsupialia, Edentata, Condylarthra, Litopterna, Notioprogonia. Bull Am Mus Nat Hist 91:1–232
Simpson GG (1967) The beginning of the age of mammals in South America, Part 2, Systematics: Notoungulata, concluded (Typotheria, Hegetotheria, Toxodonta, Notoungulata incertae sedis), Astrapotheria, Trigonostylopoidea, Pyrotheria, Xenungulata, Mammalia incertae sedis. Bull Am Mus Nat Hist 137:1–259
Song S, Liub L, Edwards SV, Wub S (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA 109:14942–14947. https://doi.org/10.1073/pnas.1211733109
Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nature 388:61–64. https://doi.org/10.1038/40386
Tzaphlidou M (2004) Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 34:39–49
Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Capellini E, Turvey ST, Reguero M, Gelfo J, Kramarz A, Burger J, Thomas-Oates J, Ashford DA, Ashton P, Rowsell K, Porter DM, Kessler B, Fisher R, Baessmann C, Kaspar S, Olsen J, Kelstrup C, Mullin V, Hofreiter M, Willerslev E, Hublin JJ, Orlando L, Southon J, Barnes I, MacPhee RDE (2015) Ancient proteins resolve the evolutionary history of Darwin’s South American Ungulates. Nature 522:81–84
Welker F, Ramos-Madrigal J, Kuhlwilm M, Liao W, Gutenbrunner P, de Manuel M, Samodova D, Mackie M, Allentoft ME, Bacon AM, Collins MJ, Cox J, Lalueza-Fox C, Olsen JV, Demeter F, Wang W, Marques-Bonet T, Cappellini E (2019) Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576:262–265
Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA, Kramarz A, Forasiepi AM, Bond M, Gelfo JN, Reguero MA, López Mendoza P, Taglioretti M, Scaglia F, Rinderknecht A, Jones W, Mena F, Billet G, Muizon C de, Aguilar JL, MacPhee RDE, Hofreiter MA (2017) A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica. Nat Commun 8:15951
Wiens JJ (1998) Does adding characters with missing data increase or decrease phylogenetic accuracy? Syst Biol 47:625–640
Wiens JJ (2003) Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? J Vert Paleontol 23:297–310
Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Syst Biol 60:719–731 https://doi.org/10.1093/sysbio/syr025
Wiens JJ, Tiu J (2012) Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS ONE 7:e42925. https://doi.org/10.1371/journal.pone.0042925
Zack SP, Penkrot TA, Bloch JI, Rose KD (2005). Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434:497–501
Acknowledgements
We thank J. Flynn (American Museum of Natural History, New York), P. Makovicky (Field Museum of Natural History, Chicago), M. Reguero (Museo de La Plata), and M. E. Pérez (Museo Paleontológico Egidio Feruglio, Trelew), for facilitating access to comparative specimens in their care. We are grateful to A. Forasiepi and S. Hernández del Pino (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza), and G. Rougier (University of Louisville) for their useful comments and suggestions. We are also grateful to the editor, Robert Asher, and to one of the anonymous reviewers for their meticulous and constructive reviews, which greatly improved the content of this paper. RDEM thanks the Department of Mammalogy, AMNH, for continuing support of his research activities.
Funding
This work was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kramarz, A.G., Macphee, R.D.E. Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé’s (2021) Sudamericungulata – Panameridiungulata hypothesis. J Mammal Evol 30, 67–77 (2023). https://doi.org/10.1007/s10914-022-09633-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10914-022-09633-5


