Endocranial Cast Anatomy of the Extinct Hipposiderid Bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera)

Abstract

Bat fossil endocasts have been little studied in the literature (nine published works, only one in the XXIth century), and macromorphology of the brain of extant bats has only been characterized at the family-level. We describe here in detail the endocranial casts of four fossil hipposiderid species based on μCT-scans data and propose a revised nomenclature of the hipposiderid brain structures that leave their imprint on endocranial casts. Exhaustive comparisons of the external morphology of our fossil cranial endocast sample allow us to discuss the distribution of both qualitative and quantitative features in this family for different epochs. A conservatism of the brain is considered to be the rule during bats evolution. Indeed, we found that encephalization did not increase since the Eocene in hipposiderid bats (contrary to other mammals) and that macromorphology of the brain is close between Paleogene, Miocene, and extant hipposiderid species. However, subtler but promising fine anatomical characters might allow distinguishing genera and species. Eventually, expanding the fossil sample and/or adding extant species could shake the paradigm of temporal homogeneity and bring new light on the morpho-anatomical evolutionary history of Hipposideridae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alba DM (2010) Cognitive inferences in fossil apes (Primates, Hominoidea): does encephalization reflect intelligence? J Anthropol Sci 88:11–48

    PubMed  Google Scholar 

  2. Amador LI, Almeida FC, Giannini NP (2020) Evolution of traditional aerodynamic variables in bats (Mammalia: Chiroptera) within a comprehensive phylogenetic framework. J Mammal Evol 27:549–561

  3. Amador LI, Moyers Arévalo RL, Almeida FC, Catalano SA, Giannini NP (2018) Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J Mammal Evol 25:37–70. https://doi.org/10.1007/s10914-016-9363-8

    Article  Google Scholar 

  4. Anthony R, Grzybowski J de (1934) Le Neopallium du Boeuf. Etude de son Développement et Interprétation de ses Plissements. J Anat 68:558–70

  5. Balanoff AM, Bever GS (2017) 1.10 The role of endocasts in the study of brain evolution. In: Kaas JH (ed) Evolution of Nervous Systems, 2nd ed. Academic Press, Oxford, pp 223–241

  6. Baron G, Stephan H, Frahm HD (eds) (1996) Comparative Neurobiology in Chiroptera. Birkhäuser Verlag, Basel

    Google Scholar 

  7. Barone R, Bortolami R (eds) (2004) Anatomie comparée des mammifères domestiques : Tome 6, Neurologie I, Système nerveux central. Vigot, Paris

    Google Scholar 

  8. Benoit J (2015) A new method of estimating brain mass through cranial capacity in extinct proboscideans to account for the non-neural tissues surrounding their brain. J Vertebr Paleontol 35:e991021. https://doi.org/10.1080/02724634.2014.991021

    Article  Google Scholar 

  9. Benoit J, Crumpton N, Mérigeaud S, Tabuce R (2013) A memory already like an elephant’s? The advanced brain morphology of the last common ancestor of Afrotheria (Mammalia). Brain Behav Evol 81:154–169. https://doi.org/10.1159/000348481

    Article  PubMed  Google Scholar 

  10. Bertrand OC, Amador-Mughal F, Lang MM, Silcox MT (2018a) New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia. J Mammal Evol 26:345–371. https://doi.org/10.1007/s10914-017-9425-6

    Article  Google Scholar 

  11. Bertrand OC, Amador-Mughal F, Lang MM, Silcox MT (2018b) Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality. Palaeontology 61:919–948. https://doi.org/10.1111/pala.12378

    Article  Google Scholar 

  12. Bertrand OC, Shelley SL, Wible JR, Williamson TE, Holbrook LT, Chester SGB, Butler IB, Brusatte SL (2019) Virtual endocranial and inner ear endocasts of the Paleocene ‘condylarth’ Chriacus : new insight into the neurosensory system and evolution of early placental mammals. J Anat 236:21–49. https://doi.org/10.1111/joa.13084

    Article  PubMed  Google Scholar 

  13. Bertrand OC, Silcox MT (2016) First virtual endocasts of a fossil rodent: Ischyromys typus (Ischyromyidae, Oligocene) and brain evolution in rodents. J Vertebr Paleontol 36. https://doi.org/10.1080/02724634.2016.1095762

  14. Bhatnagar KP, Smith TD, Rai SN, Frahm HD (2016) The chiropteran brain database: volumetric survey of the hypophysis in 165 species. Anat Rec 299:492–510. https://doi.org/10.1002/ar.23321

  15. Brown EE, Cashmore DD, Simmons NB, Butler RJ (2019) Quantifying the completeness of the bat fossil record. Palaeontology 62:757–776. https://doi.org/10.1111/pala.12426

    Article  Google Scholar 

  16. Chambers JM, Hastie TJ (eds) (1991) Statistical Models in S. Chapman & Hall/CRC, London

    Google Scholar 

  17. Da Cruz A (2015) Photofiltre 7 [Computer Software]. Retrieved from http://www.photofiltre.com/

  18. Dechaseaux C (1956) L’encéphale des mammifères volants. Colloq Int Cent Natl Rech Sci 80:51–58

    Google Scholar 

  19. Dechaseaux C (1962) Cerveaux d’animaux disparus. Masson et Cie, Paris

    Google Scholar 

  20. Dechaseaux C (1970) Récents résultats en paléoneurologie. Bull Académie Société Lorraines des Sci 9:223–232

    Google Scholar 

  21. Dechaseaux C (1973) Essais de paléoneurologie. Ann Paléontol 59:8–132

    Google Scholar 

  22. Dow RS (1942) The evolution and anatomy of the cerebellum. Biol Rev 17:179–220. https://doi.org/10.1111/j.1469-185X.1942.tb00437.x

    Article  Google Scholar 

  23. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241. https://doi.org/10.2307/1266041

    Article  Google Scholar 

  24. Edinger T (1926) Fossile Fledermausgehirne. Senckenbergiana 8:1–16

    Google Scholar 

  25. Edinger T (1929) Die fossilen Gehirne. Ergeb Anat Entwicklungsgesch 28:1–249

    Google Scholar 

  26. Edinger T (1949) Paleoneurology vs comparative brain anatomy. Confin Neurol 9:5–24

    CAS  Article  Google Scholar 

  27. Edinger T (1961) Fossil brains reflect specialized behavior. World Neurol 2:934–41

    CAS  PubMed  Google Scholar 

  28. Edinger T (1963) Meanings of midbrain exposure, past and present. In: XVI International Congress of Zoology, pp 225–228

  29. Edinger T (1964a) Midbrain exposure and overlap in mammals. Am Zool 4:5–19. https://doi.org/10.2307/3881308

    CAS  Article  PubMed  Google Scholar 

  30. Edinger T (1964b) Recent advances in paleoneurology. Prog Brain Res 6:147–160. https://doi.org/10.1016/S0079-6123(08)63721-8

    Article  Google Scholar 

  31. Eisenberg JF, Wilson DE (1978) Relative brain size and feeding strategies in the Chiroptera. Evolution 32:740–751. https://doi.org/10.2307/2407489

    Article  PubMed  Google Scholar 

  32. Eiting TP, Gunnell GF (2009) Global completeness of the bat fossil record. J Mammal Evol 16:151–173. https://doi.org/10.1007/s10914-009-9118-x

    Article  Google Scholar 

  33. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  34. Ferreira-Cardoso S, Araújo R, Martins NE, Martins GG, Walsh S, Martins RMS, Kardjilov N, Manke I, Hilger A, Castanhinha R (2017) Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates. Sci Rep 7:2005. https://doi.org/10.1038/s41598-017-01981-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Fisher SRA (1970) Statistical Methods for Research Workers, 14th ed. Oliver and Boyd, Edinburgh

  36. Foley NM, Goodman SM, Whelan CV, Puechmaille SJ, Teeling EC (2017) Towards navigating the Minotaur’s labyrinth: cryptic diversity and taxonomic revision within the speciose genus Hipposideros (Hipposideridae). Acta Chiropterol 19:1–18. https://doi.org/10.3161/15081109ACC2017.19.1.001

    Article  Google Scholar 

  37. Foley NM, Thong VD, Soisook P, Goodman SM, Armstrong KN, Jacobs DS, Puechmaille SJ, Teeling EC (2015) How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol Evol 32:313–333. https://doi.org/10.1093/molbev/msu329

    CAS  Article  PubMed  Google Scholar 

  38. Friant M (1932) L’influence de la taille sur la morphologie des dents chez les mammifères. La Terre la Vie 135–144

  39. Friant M (1954) Le cerveau du Lamantin (Manatus inunguis Natterer). Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich 99:129–135

    Google Scholar 

  40. Giannini NP, Wible JR, Simmons NB (2006) On the cranial osteology of Chiroptera. I. Pteropus (Megachiroptera: Pteropodidae). Bull Am Mus Nat Hist 295:1–134. https://doi.org/10.1206/0003-0090(2006)295[0001:OTCOOC]2.0.CO;2

    Article  Google Scholar 

  41. Gingerich PD (2016) Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). J Mammal Evol 23:17–31. https://doi.org/10.1007/s10914-015-9304-y

    Article  Google Scholar 

  42. Gonzales LA, Benefit BR, McCrossin ML, Spoor F (2015) Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys. Nat Commun 6:7580. https://doi.org/10.1038/ncomms8580

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B Biol Sci 326:119–157. https://doi.org/10.1098/rstb.1989.0106

    CAS  Article  Google Scholar 

  44. Hand SJ, Kirsch JAW (2003) Archerops, a new annectent hipposiderid genus (Mammalia : Microchiroptera) from the Australian Miocene. J Paleontol 77:1139–1151. https://doi.org/10.1666/0022-3360(2003)077<1139:AANAHG>2.0.CO;2

    Article  Google Scholar 

  45. Hollander M, Wolfe DA (1973) Nonparametric Statistical Methods. John Wiley & Sons, New York

    Google Scholar 

  46. Horikawa J, Suga N (1986) Biosonar signals and cerebellar auditory neurons of the mustached bat. J Neurophysiol 55:1247–1267. https://doi.org/10.1152/jn.1986.55.6.1247

    CAS  Article  PubMed  Google Scholar 

  47. Inkscape Project (2018) Inkscape [Computer software]. Retrieved from https://inkscape.org/

  48. Ito M (1982) Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annu Rev Neurosci 5:275–297. https://doi.org/10.1146/annurev.ne.05.030182.001423

    CAS  Article  PubMed  Google Scholar 

  49. Jerison HJ (1973) Evolution of the Brain and Intelligence. Academic Press, New York

    Google Scholar 

  50. Jolicoeur P, Pirlot P, Baron G, Stephan H (1984) Brain structure and correlation patterns in Insectivora, Chiroptera, and Primates. Syst Biol 33:14–29. https://doi.org/10.1093/sysbio/33.1.14

    Article  Google Scholar 

  51. Jones KE, Bininda-Emonds ORP, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59:2243–2255. https://doi.org/10.1554/04-635.1

    Article  PubMed  Google Scholar 

  52. Kelava I, Lewitus E, Huttner WB (2013) The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front Neuroanat 7:1–9. https://doi.org/10.3389/fnana.2013.00016

    Article  Google Scholar 

  53. Kochetkova VI (1978) The subject matter of paleoneurological studies. In: Kochetkova VI, Jerison HJ, Jerison I (eds) Paleoneurology. V. H. Winston & Sons, Washington, D.C., pp 17–45

  54. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  55. Larsell O, Dow RS (1935) The development of the cerebellum in the bat (Corynorhinus sp.) and certain other mammals. J Comp Neurol 62:443–468. https://doi.org/10.1002/cne.900620210

    Article  Google Scholar 

  56. Lebrun R (2018) MorphoDig, an open-source 3D freeware dedicated to biology

  57. Legendre S (1982) Hipposideridae (Mammalia: Chiroptera) from the Mediterranean middle and late Neogene, and evolution of the genera Hipposideros and Asellia. J Vertebr Paleontol 2:372–385. https://doi.org/10.1080/02724634.1982.10011939

    Article  Google Scholar 

  58. Maitre E (2014) Western European middle Eocene to early Oligocene Chiroptera: systematics, phylogeny and palaeoecology based on new material from the Quercy (France). Swiss J Palaeontol 133:141–242. https://doi.org/10.1007/s13358-014-0069-3

    Article  Google Scholar 

  59. Mein P (1975) Résultats du groupe de travail des vertébrés: biozonation du Neogène méditerranéen à partir des mammifères. In: Senes J (ed) Report on Activity of the RCMNS (Regional Committee on Mediterranean Neogene Stratigraphy) Working Groups (1971–1975). Bratislava, pp 78–81

  60. Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91:11–18. https://doi.org/10.1644/08-MAMM-A-347R1.1.Key

    Article  Google Scholar 

  61. Muizon C de, Billet G, Argot C, Ladevèze S, Goussard F (2015) Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology. Geodiversitas 37:397–631. https://doi.org/10.5252/g2015n4a1

  62. Neubauer S (2014) Endocasts: possibilities and limitations for the interpretation of human brain evolution. Brain Behav Evol 84:117–134. https://doi.org/10.1159/000365276

    Article  PubMed  Google Scholar 

  63. Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The Central Nervous System of Vertebrates. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 159–228

  64. Nomina Anatomica Veterinaria (NAV) (2017) International Committee on Veterinary Gross Anatomical Nomenclature (I.C.V.G.A.N.), 6th edn. The Editorial Committee with permission of the World Association of Veterinary Anatomists (W.A.V.A.), Hanover (Germany), Ghent (Belgium), Columbia, MO (USA), Rio de Janeiro (Brazil)

  65. Ogle DH, Wheeler P, Dinno A (2019) FSA: Fisheries Stock Analysis. R package version 0.8.30.9000, https://github.com/droglenc/FSA

  66. Orliac MJ, Gilissen E (2012) Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains. Proc R Soc B Biol Sci 279:3670–3677. https://doi.org/10.1098/rspb.2012.1156

    CAS  Article  Google Scholar 

  67. Orliac MJ, O’Leary MA (2014) Comparative anatomy of the petrosal bone of dichobunoids, early members of Artiodactylamorpha (Mammalia). J Mammal Evol 21:299–320. https://doi.org/10.1007/s10914-014-9254-9

    Article  Google Scholar 

  68. Orlov YA (ed) (1961) В мире древних животных (In the ancient animal kingdom). Publishing House of the Academy of Sciences of the USSR, Moscow

    Google Scholar 

  69. Paulin MG (1993) The role of the cerebellum in motor control and perception. Brain Behav Evol 41:39–50. https://doi.org/10.1159/000113822

    CAS  Article  PubMed  Google Scholar 

  70. R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  71. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924. https://doi.org/10.1152/jn.00768.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Ramdarshan A, Orliac MJ (2016) Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. Am J Phys Anthropol 159:5–16. https://doi.org/10.1002/ajpa.22868

    Article  PubMed  Google Scholar 

  73. Ravel A, Adaci M, Bensalah M, Charruault AL, Essid EM, Ammar HK, Marzougui W, Mahboubi M, Mebrouk F, Merzeraud G, Vianey-Liaud M, Tabuce R, Marivaux L (2016) Origine et radiation initiale des chauves-souris modernes : nouvelles découvertes dans l’Éocène d’Afrique du Nord. Geodiversitas 38:355–434. https://doi.org/10.5252/g2016n3a3

    Article  Google Scholar 

  74. Rowe TB, Macrini TE, Luo Z-X (2011) Fossil evidence on origin of the mammalian brain. Science 332:955–957. https://doi.org/10.1126/science.1203117

    CAS  Article  PubMed  Google Scholar 

  75. Royston P (1995) Remark AS R94: a remark on algorithm AS 181: the W-test for normality. Appl Stat 44:547. https://doi.org/10.2307/2986146

    Article  Google Scholar 

  76. RStudio Team (2016) RStudio: Integrated Development Environment for R. RStudio, PBC, Boston. http://www.rstudio.com/

  77. Safi K, Seid MA, Dechmann DKN (2005) Bigger is not always better: when brains get smaller. Biol Lett 1:283–286. https://doi.org/10.1098/rsbl.2005.0333

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schmidt-Kittler N (ed) (1987) International Symposium on Mammalian Biostratigraphy and Palaeoecology of the European Paleogene-Mainz, February 18th–21st 1987. Münchner Geowissenschaftliche Abhandlungen A 10:1–312

  79. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  81. Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69:1528–1545. https://doi.org/10.1111/evo.12681

  82. Shultz S, Dunbar R (2010) Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc Natl Acad Sci USA 107:21582–21586. https://doi.org/10.1073/pnas.1005246107

    Article  PubMed  Google Scholar 

  83. Sigé B (1968) Les Chiroptères du Miocène inférieur de Bouzigues. 1- Etude systématique. Palaeovertebrata 1:65–133. https://doi.org/10.18563/pv.1.3.65-133

    Article  Google Scholar 

  84. Sigé B, Crochet J-Y, Sudre J, Aguilar JP, Escarguel G (1997) Nouveaux sites d’âges variés dans les remplissages karstiques du Miocène inférieur de Bouzigues (Hérault, Sud de la France). Geobios 30:477–483. https://doi.org/10.1016/S0016-6995(97)80054-X

    Article  Google Scholar 

  85. Silcox MT, Benham AE, Bloch JI (2010) Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521. https://doi.org/10.1016/j.jhevol.2010.03.008

    Article  PubMed  Google Scholar 

  86. Silcox MT, Dalmyn CK, Bloch JI (2009) Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc Natl Acad Sci USA 106:10987–10992. https://doi.org/10.1073/pnas.0812140106

    Article  PubMed  Google Scholar 

  87. Simmons NB (2000) Bat phylogeny: an evolutionary context for comparative studies. In: Adams RA, Pedersen SC (eds) Ontogeny, Functional Ecology, and Evolution of Bats. Cambridge University Press, New-York, pp 9–58

  88. Simmons NB (2005) Chiroptera. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals. John Hopkins University Press, Baltimore, pp 159–174

  89. Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182

    Google Scholar 

  90. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–821. https://doi.org/10.1038/nature06549

    CAS  Article  PubMed  Google Scholar 

  91. Smith GE (1902a) On the homologies of the cerebral sulci. J Anat Physiol 36:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith GE (1902b) The primary subdivision of the mammalian cerebellum. J Anat Physiol 36:381–5

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith RJ (2002) Estimation of body mass in paleontology. J Hum Evol 43:271–287. https://doi.org/10.1006/jhev.2002.0573

    Article  Google Scholar 

  94. Takai M, Shigehara N, Egi N, Tsubamoto T (2003) Endocranial cast and morphology of the olfactory bulb of Amphipithecus mogaungensis (latest middle Eocene of Myanmar). Primates 44:137–144. https://doi.org/10.1007/s10329-002-0027-3

    Article  PubMed  Google Scholar 

  95. Teeling EC (2009) Bats (Chiroptera). In: Hedges SB, Kumar S (eds) The Timetree of Life. Oxford University Press, New York, pp 499–503

  96. Teeling EC, Madsen O, Van Den Bussche RA, De Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99:1431–1436. https://doi.org/10.1073/pnas.022477199

  97. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192. https://doi.org/10.1038/35003188

    CAS  Article  PubMed  Google Scholar 

  98. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5:99. https://doi.org/10.2307/3001913

  99. van Dongen PAM (1998) Brain size in vertebrates. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The Central Nervous System of Vertebrates. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 2099–2134

  100. Voogd J, Nieuwenhuys R, van Dongen PAM, ten Donkelaar HJ (1998) Mammals. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The Central Nervous System of Vertebrates. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1637–2097

  101. Voogd J, Wylie DRW (2004) Functional and anatomical organization of floccular zones: a preserved feature in vertebrates. J Comp Neurol 470:107–112. https://doi.org/10.1002/cne.11022

    Article  PubMed  Google Scholar 

  102. Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50. https://doi.org/10.1007/BF00238229

  103. Wilson LAB, Hand SJ, López-Aguirre C, Archer M, Black KH, Beck RMD, Armstrong KN, Wroe S (2016) Cranial shape variation and phylogenetic relationships of extinct and extant Old World leaf-nosed bats. Alcheringa An Australas J Palaeontol 40:509–524. https://doi.org/10.1080/03115518.2016.1196434

    Article  Google Scholar 

  104. Yao L, Brown J-P, Stampanoni M, Marone F, Isler K, Martin RD (2012) Evolutionary change in the brain size of bats. Brain Behav Evol 80:15–25. https://doi.org/10.1159/000338324

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Costeur (NMBS) for access to the collections. We are grateful to the MRI platform member of the national infrastructure France-BioImaging supported by the French National Research Agency (ANR-10-INBS-04, «Investments for the future»), the labex CEMEB (ANR-10-LABX-0004) and NUMEV (ANR-10-LABX-0020). We also acknowledge Nicolas Brualla for the segmentation of the Pa. quercyi endocast and Romain Weppe for fruitful comments on the figures. Finally, we acknowledge two anonymous reviewers for their fruitful comments. This is ISEM publication 2020-252.

Funding

This work was, in part, financially supported by the ANR program DEADENDER (ANR-18-CE02–0003-01) headed by M. J. Orliac.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacob Maugoust.

Ethics declarations

Competing Interests

The authors declare having no competing interests.

Supplementary Information

ESM 1

(PDF 172635 kb)

ESM 2

(XLSX 143 kb)

ESM 3

(R 25 kb)

ESM 4

(TXT 93 kb)

ESM 5

(TXT 29 kb)

ESM 6

(TXT 6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maugoust, J., Orliac, M.J. Endocranial Cast Anatomy of the Extinct Hipposiderid Bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera). J Mammal Evol (2021). https://doi.org/10.1007/s10914-020-09522-9

Download citation

Keywords

  • Endocast
  • Hipposideridae
  • Paleogene
  • Brain
  • μCT-scan