Dental Variation in Megabats (Chiroptera: Pteropodidae): Tooth Metrics Correlate with Body Size and Tooth Proportions Reflect Phylogeny

Abstract

Variation in the dentition yields insight into the evolutionary history of Mammalia. However, to date, there has been limited research on the dental variation in Pteropodidae, a family of bats found throughout sub-Saharan Africa, Southeast Asia, and Oceania. Most species are large, diurnal, non-echolocating, and eat fruit or nectar. Pteropodids are of significant concern in conservation due to rapidly declining populations resulting from habitat loss, climate change, and their impacts on agriculture and disease. We collected dental metrics from the mandibular postcanine teeth of 101 pteropodid specimens spanning six species within the family to test three hypotheses: H1) dental metrics are significantly different across pteropodid species; H2) variation in pteropodid dental metrics is associated with variation in body size; and H3) variation in pteropodid dental proportions is associated with phylogenetic relatedness. We find that dental linear metrics vary significantly across pteropodids and are significantly associated with body size. In contrast, dental proportions of pteropodids reflect phylogenetic relationships. We propose that the combination of approaches for quantifying postcanine dental variation can elucidate and refine our understanding of the various selective forces that shaped the Pteropodidae radiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams RA (2008) Morphogenesis in bat wings: linking development, evolution and ecology. Cells Tissues Organs 187(1):13-23. doi: https://doi.org/10.1159/000109960

    Article  PubMed  Google Scholar 

  2. Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ (2011) A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Currents 3. https://doi.org/10.1371/currents.RRN1212

  3. Aguirre LF, Herrel A, Van Damme R, Matthysen E (2002) Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proc R Soc B-Biol Sci 269:1271-1278. doi: https://doi.org/10.1098/rspb.2002.2011

    Article  Google Scholar 

  4. Aguirre LF, Herrel A, Van Damme R, Matthysen E (2003) The implications of food hardness for diet in bats. Funct Ecol 17:201-212. doi: https://doi.org/10.1046/j.1365-2435.2003.00721.x

    Article  Google Scholar 

  5. Almeida FC, Giannini NP, DeSalle R, Simmons NB (2011) Evolutionary relationships of the Old World fruit bats (Chiroptera, Pteropodidae): another star phylogeny? BMC Evol Biol 11:281. doi: https://doi.org/10.1186/1471-2148-11-281

    Article  PubMed  PubMed Central  Google Scholar 

  6. Almeida FC, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol 77:83-95. doi: https://doi.org/10.1016/j.ympev.2014.03.009

    Article  PubMed  Google Scholar 

  7. Amador LI, Arévalo RLM, Almeida FC, Catalano SA, Giannini NP (2018) Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J Mammal Evol 25:37-70. doi: https://doi.org/10.1007/s10914-016-9363-8

    Article  Google Scholar 

  8. Arévalo RLM, Amador LI, Almeida FC, Giannini NP (2020) Evolution of body mass in bats: insights from a large supermatrix phylogeny. J Mammal Evol 27:123-138. doi: https://doi.org/10.1007/s10914-018-9447-8

    Article  Google Scholar 

  9. Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M (2008) Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421:37-51. doi: https://doi.org/10.1016/j.gene.2008.05.024

    CAS  Article  PubMed  Google Scholar 

  10. Aziz SA, Olival KJ, Bumrungsri S, Richards GC, Racey PA (2015) The conflict between pteropodid bats and fruit growers: species, legislation, and mitigation. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer, Cham, pp 377-426. doi: https://doi.org/10.1007/978-3-319-25220-9_13

    Google Scholar 

  11. Baker RJ, Novacek MJ, Simmons NB (1991) On the monophyly of bats. Syst Zool 40(2):216-231. doi: https://doi.org/10.1093/sysbio/40.2.216

    Article  Google Scholar 

  12. Banack SA (1998) Diet selection and resource use by flying foxes (genus Pteropus). Ecology 79:1949-1967. doi: https://doi.org/10.1890/0012-9658(1998)079[1949:DSARUB]2.0.CO;2

    Article  Google Scholar 

  13. Barclay RM, Barclay LE, Jacobs DS (2006) Deliberate insectivory by the fruit bat Rousettus aegyptiacus. Acta Chiropterol 8(2):549-554. doi: https://doi.org/10.3161/1733-5329(2006)8[549:DIBTFB]2.0.CO;2

    Article  Google Scholar 

  14. Benda P, Vallo P, Hulva P, Horáček I (2012) The Egyptian fruit bat Rousettus aegyptiacus (Chiroptera: Pteropodidae) in the Palaearctic: geographical variation and taxonomic status. Biologia 67:1230-1244. doi: https://doi.org/10.2478/s11756-012-0105-y

    Article  Google Scholar 

  15. Bergmans W (1976) A revision of the African genus Myonycteris Matschie, 1899 (Mammalia, Megachiroptera). Beaufortia 24(317):189-216

    Google Scholar 

  16. Betke M, Hirsh DE, Makris NC, McCracken GF, Procopio M, Hristov NI, Tang S, Bagchi A, Reichard JD, Horn JW, Crampton S, Cleveland CJ, Kunz TH (2008) Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal 89:18-24. doi: https://doi.org/10.1644/07-MAMM-A-011.1

    Article  Google Scholar 

  17. Birt P, Hall LS, Smith GC (1997) Ecomorphology of the tongues of Australian Megachiroptera (Chiroptera: Pteropodidae). Aust J Zool 45:369-384. doi: https://doi.org/10.1071/ZO97005

    Article  Google Scholar 

  18. Blood BR, McFarlane DA (1988) A new method for calculating the wing area of bats. Mammalia 52(4):600-603. doi: https://doi.org/10.1515/mamm-1988-0419

    Article  Google Scholar 

  19. Bonaccorso FJ, Winkelmann JR, Dumont ER, Thibault K (2002) Home range of Dobsonia minor (Pteropodidae): a solitary, foliage–roosting fruit bat in Papua New Guinea. Biotropica 34(1)127-135. doi: https://doi.org/10.1111/j.1744-7429.2002.tb00248.x

    Article  Google Scholar 

  20. Boonman A, Bumrungsri S, Yovel Y (2014) Nonecholocating fruit bats produce biosonar clicks with their wings. Curr Biol 24(24):2962-2967. doi: https://doi.org/10.1016/j.cub.2014.10.077

    CAS  Article  PubMed  Google Scholar 

  21. Breed AC, Field HE, Smith CS, Edmonston J, Meers J (2010) Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7:204-212. doi: https://doi.org/10.1007/s10393-010-0332-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brown VA, Brooke A, Fordyce JA, McCracken GF (2011) Genetic analysis of populations of the threatened bat Pteropus mariannus. Conserv Genet 12:933-941. doi: https://doi.org/10.1007/s10592-011-0196-y

    Article  Google Scholar 

  23. Campbell P, Schneider CJ, Zubaid A, Adnan AM, Kunz TH (2007) Morphological and ecological correlates of coexistence in Malaysian fruit bats (Chiroptera: Pteropodidae). J Mammal 88:105-118. doi: https://doi.org/10.1644/06-MAMM-A-160R1.1

    Article  Google Scholar 

  24. Cao Y, Fujiwara M, Nikaido M, Okada N, Hasegawa M (2000) Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene 259:149-158. doi: https://doi.org/10.1016/S0378-1119(00)00427-3

    CAS  Article  PubMed  Google Scholar 

  25. Cardillo M, Meijaard E (2010) Phylogeny and co-occurrence of mammal species on Southeast Asian islands. Global Ecol Biogeogr 19:465-474. doi: https://doi.org/10.1111/j.1466-8238.2010.00537.x

    Article  Google Scholar 

  26. Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1-18. doi: https://doi.org/10.2307/1936628

    Article  Google Scholar 

  27. Caumul R, Polly PD (2005) Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 29:2460-2472. doi: https://doi.org/10.1111/j.0014-3820.2005.tb00955.x

    Article  Google Scholar 

  28. Creighton GK (1980) Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J Zool 191:435-443. doi: https://doi.org/10.1111/j.1469-321980.tb01475.x

  29. Daniel BM, Green KE, Doulton H, Salim DM, Said I, Hudson M, Dawson JS, Young RP, Houmadi A (2016) A bat on the brink? A range-wide survey of the critically endangered Livingstone’s fruit bat Pteropus livingstonii. Oryx 51(4):742-751. doi: https://doi.org/10.1017/S0030605317000357

    Article  Google Scholar 

  30. Dumont ER (1997) Cranial shape in fruit, nectar, and exudate feeders: implications for interpreting the fossil record. Am J Phys Anthropol 102:187-202. doi: https://doi.org/10.1002/(SICI)1096-8644(199702)102:2<187::AID-AJPA4>3.0.CO;2-W

    CAS  Article  PubMed  Google Scholar 

  31. Dumont ER (2003) Bats and fruit: an ecomorphological approach. In: Kunz TH, Fenton MB (eds) Bat Ecology. University of Chicago Press, Chicago, pp 398-429

  32. Dumont ER (2004) Patterns of diversity in cranial shape among plant-visiting bats. Acta Chiropterol 6:59-74. doi: https://doi.org/10.3161/1508110042176581

    Article  Google Scholar 

  33. Dumont ER (2007) Feeding mechanisms in bats: variation within the constraints of flight. Integr Comp Biol 47:137-146. doi: https://doi.org/10.1093/icb/icm007

    Article  PubMed  Google Scholar 

  34. Dumont ER, O'Neal R (2004) Food hardness and feeding behavior in Old World fruit bats (Pteropodidae). J Mammal 85:8-14. doi: https://doi.org/10.1644/BOS-107

  35. Eby P (1998) An analysis of diet specialization in frugivorous Pteropus poliocephalus (Megachiroptera) in Australian subtropical rainforest. Aust J Ecol 23:443-456. doi: https://doi.org/10.1111/j.1442-9993.1998.tb00752.x

    Article  Google Scholar 

  36. Eklöf J, Rydell J (2017) Evolution and diversity. In: Bats – In A World of Echoes. Springer, Cham, pp 9-20. doi: https://doi.org/10.1007/978-3-319-66538-2_1

    Google Scholar 

  37. Falanruw MVC (1988) On the status, reproductive biology and management of fruit bats of Yap, Micronesia. Micronesica 21:39-51

    Google Scholar 

  38. Faurby S, Svenning JC (2015) A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol Phylogenet Evol 84:14-26. doi: https://doi.org/10.1016/j.ympev.2014.11.001

    Article  PubMed  Google Scholar 

  39. Fleming TH, Breitwisch R, Whitesides GH (1987) Patterns of tropical vertebrate frugivore diversity. Annu Rev Ecol Syst 18:91-109. doi: https://doi.org/10.1146/annurev.es.18.110187.000515

    Article  Google Scholar 

  40. Freeman PW (1979) Specialized insectivory: beetle-eating and moth-eating molossid bats. J Mammal 60:467-479. doi: https://doi.org/10.2307/1380088

    Article  Google Scholar 

  41. Freeman PW (1988) Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biol J Linnean Soc 33:249-272. doi: https://doi.org/10.1111/j.1095-8312.1988.tb00811.x

  42. Freeman PW (1995) Nectarivorous feeding mechanisms in bats. Biol J Linnean Soc 56:439-463. doi: https://doi.org/10.1111/j.1095-8312.1995.tb01104.x

  43. Freeman PW (1998) Form, function, and evolution in skulls and teeth of bats. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press, Washington, DC, pp 140-156

    Google Scholar 

  44. Fujita MS, Tuttle MD (1991) Flying foxes (Chiroptera: Pteropodidae): threatened animals of key ecological and economic importance. Conserv Biol 5:455-463. doi: https://doi.org/10.1111/j.1523-1739.1991.tb00352.x

    Article  Google Scholar 

  45. Funakoshi K, Zubaid A, Matsumura S (1995) Regular pulse emission in some megachiropteran bats. Zool Sci 12(4):503-506. doi: https://doi.org/10.2108/zsj.12.503

    CAS  Article  PubMed  Google Scholar 

  46. Giannini NP, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge University Press, Cambridge, pp 530-555

  47. Giannini NP, Simmons NB (2007) Element homology and the evolution of dental formulae in megachiropteran bats (Mammalia: Chiroptera: Pteropodidae). Am Mus Novitates 3559:1-27. doi: https://doi.org/10.1206/0003-0082(2007)3559[1:EHATEO]2.0.CO;2

  48. Giannini NP, Wible JR, Simmons NB (2006) On the cranial osteology of Chiroptera. I. Pteropus (Megachiroptera: Pteropodidae). Bull Am Mus Nat Hist 295:1-134. doi: https://doi.org/10.1206/0003-0090(2006)295[0001:OTCOOC]2.0.CO;2

  49. Gingerich PD (1977) Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. Am J Phys Anthropol 47:395-398. doi: https://doi.org/10.1002/ajpa.1330470308

    CAS  Article  PubMed  Google Scholar 

  50. Gingerich PD, Schoeninger MJ (1979) Patterns of tooth size variability in the dentition of primates. Am J Phys Anthropol 51:457-465. doi: https://doi.org/10.1002/ajpa.1330510318

    CAS  Article  PubMed  Google Scholar 

  51. Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81-100. doi: https://doi.org/10.1002/ajpa.1330580110

    CAS  Article  PubMed  Google Scholar 

  52. Goldstein S, Post D, Melnick D (1978) An analysis of cercopithecoid odontometrics. I. The scaling of the maxillary dentition. Am J Phys Anthropol 49:517-532. doi: https://doi.org/10.1002/ajpa.1330490412

    CAS  Article  PubMed  Google Scholar 

  53. Goodman SM, Rajemison FI, Lalarivoniaina N, Olivà S (2017) Morphometric patterns of secondary sexual dimorphism and seasonal differences in Rousettus madagascariensis from northern Madagascar. Acta Chiropterol 19(1):71-75. doi: https://doi.org/10.3161/15081109ACC2017.19.1.005

    Article  Google Scholar 

  54. Gould E (1988) Wing-clapping sounds of Eonycteris spelaea (Pteropodidae) in Malaysia. J Mammal 69(2):378-379. doi: https://doi.org/10.2307/1381392

  55. Gould SJ (1975) On the scaling of tooth size in mammals. Am Zool 15:351-362. doi: https://doi.org/10.1093/icb/15.2.353

    Article  Google Scholar 

  56. Greenhall AM (1972) The biting and feeding habits of the vampire bat, Desmodus rotundus. J Zool 168(4):451-461. doi: https://doi.org/10.1111/j.1469-7998.1972.tb01361.x

    Article  Google Scholar 

  57. Grieco TM, Rizk OT, Hlusko LJ (2013) A modular framework characterizes micro- and macroevolution of Old World monkey dentitions. Evolution 67:241-259. doi: https://doi.org/10.1111/j.1558-5646.2012.01757.x

    Article  PubMed  Google Scholar 

  58. Griffin DR, Novick A, Kornfield M (1958) The sensitivity of echolocation in the fruit bat, Rousettus. Biol Bull 115:107-113. doi: https://doi.org/10.2307/1539097

    Article  Google Scholar 

  59. Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G, FitzJohn R, Pennell M, Slater G Brown J, Uyeda J, Eastman J (2019) Package ‘geiger’. Analysis of Evolutionary Diversification. https://cran.r-project.org/web/packages/geiger/geiger.pdf

    Google Scholar 

  60. Heaney LR (1978) Island area and body size of insular mammals: evidence from the tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32:29-44. doi: https://doi.org/10.1111/j.1558-5646.1978.tb01096.x

    Article  PubMed  Google Scholar 

  61. Hlusko LJ, Lease LR, Mahaney MC (2006) Evolution of genetically correlated traits: tooth size and body size in baboons. Am J Phys Anthropol 131:420-427. doi: https://doi.org/10.1002/ajpa.20435

    Article  PubMed  Google Scholar 

  62. Hlusko LJ, Sage RD, Mahaney MC (2011) Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. J Exp Zool B Mol Dev Ecol 316:21-49. doi: https://doi.org/10.1002/jez.b.21378

    Article  Google Scholar 

  63. Hlusko LJ, Schmitt CA, Monson TA, Brasil MF, Mahaney MC (2016) The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution. Proc Natl Acad Sci USA 113:9262-9267. doi: https://doi.org/10.1073/pnas.1605901113

    CAS  Article  PubMed  Google Scholar 

  64. Holland RA, Waters DA, Rayner JM (2004) Echolocation signal structure in the megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. J Exp Biol 207(25):4361-4369. doi: https://doi.org/10.1242/jeb.01288

    Article  PubMed  Google Scholar 

  65. Hulva P, Marešová T, Dundarova H, Bilgin R, Benda P, Bartonička T, Horáček I (2012) Environmental margin and island evolution in Middle Eastern populations of the Egyptian fruit bat. Mol Ecol 21:6104-6116. doi: https://doi.org/10.1111/mec.12078

    CAS  Article  PubMed  Google Scholar 

  66. Jepsen GL (1970) Bat origins and evolution. In: Wimsatt WA (ed) Biology of Bats 1. Academic Press, Cambridge, pp 1-64

    Google Scholar 

  67. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149-156. doi: https://doi.org/10.1016/j.tree.2006.01.001

    Article  PubMed  Google Scholar 

  68. Jones KE, Bielby J, Cardillo M, Fritz SA, O'Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648. doi: https://doi.org/10.1890/08-1494.1

  69. Jones KE, Bininda-Emonds OR, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59(10):2243-2255. doi: https://doi.org/10.1111/j.0014-3820.2005.tb00932.x

  70. Jones KE, Purvis A, Maclarnon AN, Bininda-Emonds OR, Simmons NB (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77(2):223-259. doi: https://doi.org/10.1017/S1464793101005899

  71. Juste J, Ibáñez C (1993) An asymmetric dental formula in a mammal, the São Tomé Island fruit bat Myonycteris brachycephala (Mammalia: Megachiroptera). Can J Zool 71(1):221-224. doi: https://doi.org/10.1139/z93-030

    Article  Google Scholar 

  72. Keeley ATH, Keeley BW (2004) The mating system of Tadarida brasiliensis (Chiroptera: Molossidae) in a large highway bridge colony. J Mammal 85:113-119. doi: https://doi.org/10.1644/BME-004

    Article  Google Scholar 

  73. Kirsch JAW, Flannery TF, Springer MS, Lapointe FJ (1995) Phylogeny of the Pteropodidae (Mammalia, Chiroptera) based on DNA hybridization, with evidence for bat monophyly. Aust J Zool 43:395-428. doi: https://doi.org/10.1071/ZO9950395

  74. Kirsch JAW, Lapointe FJ (1997) You aren't (always) what you eat: evolution of nectar-feeding among Old World fruitbats (Megachiroptera: Pteropodidae). In: Givnish TJ, Sytsma KJ (eds) Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, pp 313-330

  75. Kitchener DJ, Gunnell A, Maharadatunkamsi (1990) Aspects of the feeding biology of fruit bats (Pteropodidae) on Lombok Island, Nusa Tenggara, Indonesia. Mammalia 54:561-578. doi: https://doi.org/10.1515/mamm.1990.54.4.561

  76. Koopman KF, Cockrum EL (1984) Bats. In: Anderson S, Jones JK Jr (eds) Orders and Families of Recent Mammals of the World. John Wiley and Sons, New York, pp 145-186

  77. Korine C, Izhaki I, Arad Z (1999) Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat's diet and implications for its conservation. Biol Conserv 88(3):301-306. doi: https://doi.org/10.1016/S0006-3207(98)00126-8

    Article  Google Scholar 

  78. Lanza B, Riccucci M, Funaioli U (2008) An interesting case of polyodontia in Epomophorus wahlbergi, with a review of this dental anomaly in bats (Chiroptera). Lynx ns 39(1):109-127

  79. Lawlor TE (1982) The evolution of body size in mammals: evidence from insular populations in Mexico. Am Nat 119:54-72. doi: https://doi.org/10.1086/283890

    Article  Google Scholar 

  80. Lister AM (1989) Rapid dwarfing of red deer on Jersey in the last interglacial. Nature 342:539-542. doi: https://doi.org/10.1038/342539a0

    CAS  Article  PubMed  Google Scholar 

  81. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683-1699. doi: https://doi.org/10.1111/j.1365-2699.2005.01314.x

    Article  Google Scholar 

  82. Lucas PW (2004) Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge

    Book  Google Scholar 

  83. Luis AD, Hayman DTS, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JRC, Mills JN, Timonin ME, Willis CKR, Cunningham AA, Fooks AR, Rupprecht CE, Wood JLN, Webb CT (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B 280(1756):20122753. doi: https://doi.org/10.1098/rspb.2012.2753

  84. Marshall AG (1983) Bats, flowers and fruit: evolutionary relationships in the Old World. Biol J Linnean Soc 20:115-135. doi: https://doi.org/10.1111/j.1095-8312.1983.tb01593.x

  85. Marshall LG, Corruccini RS (1978) Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 4(2):101–119. doi: https://doi.org/10.1017/S0094837300005790

    Article  Google Scholar 

  86. Maryanto I, Yani M, Prijono SN, Wiantoro S (2012) A new species of fruit bat (Megachiroptera: Pteropodidae: Thoopterus) from Sulawesi and adjacent islands, Indonesia. Rec West Aust Mus 27:68-84. doi: https://doi.org/10.18195/issn.0312-3162.27(1).2012.068-084

    Article  Google Scholar 

  87. McNab BK, Armstrong MI (2001) Sexual dimorphism and scaling of energetics in flying foxes of the genus Pteropus. J Mammal 82(3):709-720. doi: https://doi.org/10.1644/1545-1542(2001)082<0709:SDASOE>2.0.CO;2

  88. McNab BK, Bonaccorso FJ (2001) The metabolism of New Guinean pteropodid bats. J Comp Physiol B 171(3):201-214. doi: https://doi.org/10.1007/s003600000163

    CAS  Article  PubMed  Google Scholar 

  89. Meng F, Zhu L, Huang W, Irwin DM, Zhang S (2016) Bats: body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes. Sci Rep 6:29960. doi: https://doi.org/10.1038/srep29960

  90. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick Ag, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334(6055):521-524. doi: https://doi.org/10.1126/science.1211028

    CAS  Article  PubMed  Google Scholar 

  91. Mickleburgh SP, Hutson AM, Racey PA (1992) Old World fruit bats: an action plan for their conservation. International Union for the Conservation of Nature and Natural Resources, Gland, Switzerland. doi: https://doi.org/10.2305/IUCN.CH.1992.SSC-AP.6.en

  92. Monson TA, Boisserie JR, Brasil MF, Clay SM, Dvoretzky R, Ravindramurthy S, Schmitt CA, Souron A, Takenaka R, Ungar PS, Yoo S, Zhou M, Zuercher ME, Hlusko LJ (2019) Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions. Ecol Evol 9:7597-7612. doi: https://doi.org/10.1002/ece3.5309

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nesi N, Kadjo B, Pourrut X, Leroy E, Shongo CP, Cruaud C, Hassanin A (2013) Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. Mol Phylogenet Evol 66(1):126-137. doi: https://doi.org/10.1016/j.ympev.2012.09.028

    Article  PubMed  Google Scholar 

  94. Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71(9):446-455. doi: https://doi.org/10.1007/BF00455897

    Article  Google Scholar 

  95. Norberg UM, Rayner JM (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc B 316(1179):335-427. doi: https://doi.org/10.1098/rstb.1987.0030

    Article  Google Scholar 

  96. Novick A (1958) Orientation in paleotropical bats II. Megachiroptera. J Exp Zool 137:443-461. doi: https://doi.org/10.1002/jez.1401370305

    CAS  Article  PubMed  Google Scholar 

  97. Nowak RM, Walker EP, Kunz TH, Pierson ED (1994) Walker's Bats of the World. Johns Hopkins University Press, Baltimore

  98. O'Farrell MJ, Studier EH (1976) Seasonal changes in wing loading, body composition, and organ weights in Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae). Bull South Calif Acad Sci 75(3):258-266

    Google Scholar 

  99. Olival KJ (2016) To cull, or not to cull, bat is the question. EcoHealth 13:6-8. doi: https://doi.org/10.1007/s10393-015-1075-7

    Article  PubMed  Google Scholar 

  100. Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612-622. doi: https://doi.org/10.1080/106351599260184

    Article  Google Scholar 

  101. Palkovacs EP (2003) Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103:37-44. doi: https://doi.org/10.1034/j.1600-0706.2003.12502.x

    Article  Google Scholar 

  102. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290. doi: https://doi.org/10.1093/bioinformatics/btg412

    CAS  Article  PubMed  Google Scholar 

  103. Parsons JG, Cairns A, Johnson CN, Robson SK, Shilton LA, Westcott DA (2007) Dietary variation in spectacled flying foxes (Pteropus conspicillatus) of the Australian Wet Tropics. Aust J Zool 54(6):417-428. doi: https://doi.org/10.1071/ZO06092

    Article  Google Scholar 

  104. Phillips CJ (2000) A theoretical consideration of dental morphology, ontogeny, and evolution in bats. In: Adams RA, Pedersen SC (eds) Ontogeny, Functional Ecology, and Evolution of Bats. Cambridge University Press, Cambridge, pp 247-274. doi: https://doi.org/10.1017/CBO9780511541872.008

    Google Scholar 

  105. Piersma T, Davidson NC (1991) Confusions of mass and size. Auk 108(2):441-443. doi: https://doi.org/10.1093/auk/108.2.441

    Article  Google Scholar 

  106. Pierson ED, Rainey WE (1992) The biology of flying foxes of the genus Pteropus: a review. In: Wilson DE, Graham GL (eds) Pacific Island Flying Foxes: Proceedings of an International Conservation Conference. Biological Report 90(23), US Fish and Wildlife Service, Washington, DC, pp 1-17

    Google Scholar 

  107. Popa EM, Anthwal N, Tucker AS (2016) Complex patterns of tooth replacement revealed in the fruit bat (Eidolon helvum). J Anat 229:847-856. doi: https://doi.org/10.1111/joa.12522

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rahman MRA, Abdullah MT (2010) Morphological variation in the dusky fruit bat, Penthetor lucasi, in Sarawak, Malaysia. Trop Nat Hist 10:141-158

    Google Scholar 

  109. Raia P, Carotenuto F, Meiri S (2010) One size does not fit all: no evidence for an optimal body size on islands. Global Ecol Biogeogr 19:475-484. doi; https://doi.org/10.1111/j.1466-8238.2010.00531.x

  110. R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  111. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217-223. doi: https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  112. Revelle W (2019) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, https://CRAN.R-project.org/package=psych

  113. Richards GC (1990) The spectacled flying-fox, Pteropus conspicillatus (Chiroptera: Pteropodidae), in north Queensland. 2. Diet, seed dispersal and feeding ecology. Aust Mammal 13:25-31

    Google Scholar 

  114. Santana SE, Grosse IR, Dumont ER (2012) Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution 66(8):2587-2598. doi: https://doi.org/10.1111/j.1558-5646.2012.01615.x

  115. Santana SE, Strait S, Dumont ER (2011) The better to eat you with: functional correlates of tooth structure in bats. Funct Ecol 25:839-847. doi: https://doi.org/10.1111/j.1365-2435.2011.01832.x

  116. Schoeman MC, Goodman SM (2012) Vocalizations in the Malagasy cave-dwelling fruit bat, Eidolon dupreanum: possible evidence of incipient echolocation? Acta Chiropterol 14(2):409-416. doi: https://doi.org/10.3161/150811012X661729

    Article  Google Scholar 

  117. Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69(9):1528-1545. doi: https://doi.org/10.1111/evo.12681

    Article  PubMed  Google Scholar 

  118. Simmons NB (2005a) An Eocene big bang for bats. Science 307:527-528. doi: https://doi.org/10.1126/science.1108871

    CAS  Article  PubMed  Google Scholar 

  119. Simmons NB (2005b) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, Vol. 2. Johns Hopkins University Press, Baltimore, pp 312-529

    Google Scholar 

  120. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451(7180):818-821. doi: https://doi.org/10.1038/nature06549

    CAS  Article  PubMed  Google Scholar 

  121. Smith JD (1976) Chiropteran evolution. In: Baker RJ, Jones JK Jr, Carter DC (eds) Biology of the Bats of the New World Phyllostomidae, Part I. Spec Publ Mus Texas Tech Univ 10:49-69

  122. Southerton SG, Birt P, Porter J, Ford HA (2004) Review of gene movement by bats and birds and its potential significance for eucalypt plantation forestry. Aust Forestry 67(1):44-53. doi: https://doi.org/10.1080/00049158.2004.10676205

    Article  Google Scholar 

  123. Speakman JR (2001) The evolution of flight and echolocation in bats: another leap in the dark. Mammal Rev 31(2):111-130. doi: https://doi.org/10.1046/j.1365-2907.2001.00082.x

    Article  Google Scholar 

  124. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241-6246. doi: https://doi.org/10.1073/pnas.111551998

    CAS  Article  PubMed  Google Scholar 

  125. Stewart AB, Makowsky R, Dudash MR (2014) Differences in foraging times between two feeding guilds within Old World fruit bats (Pteropodidae) in southern Thailand. J Trop Ecol 30(3):249-257. doi: https://doi.org/10.1017/S0266467414000042

    Article  Google Scholar 

  126. Stockwell EF (2001) Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). J Zool 254(4):505-514. doi: https://doi.org/10.1017/S0952836901001005

  127. Storz JF, Balasingh J, Bhat HR, Nathan PT, Doss DPS, Prakash AA, Kunz TH (2001) Clinal variation in body size and sexual dimorphism in an Indian fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Biol J Linnean Soc 72(1):17-31. doi: https://doi.org/10.1111/j.1095-8312.2001.tb01298.x

  128. Tan KH, Zubaid A, Kunz TH (1998) Food habits of Cynopterus brachyotis (Muller) (Chiroptera: Pteropodidau) in Peninsular Malaysia. J Trop Ecol 14(3):299-307. doi: https://doi.org/10.1017/S0266467498000236

    Article  Google Scholar 

  129. Teeling EC (2009) Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol Evol 24:351-354. doi: https://doi.org/10.1016/j.tree.2009.02.012

    Article  PubMed  Google Scholar 

  130. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403(6766):188-192. doi: https://doi.org/10.1038/35003188

    CAS  Article  PubMed  Google Scholar 

  131. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580-584. doi: https://doi.org/10.1126/science.1105113

    CAS  Article  PubMed  Google Scholar 

  132. Thewissen JGM, Babcock SK (1992) The origin of flight in bats. BioScience 42:340-345. doi: https://doi.org/10.2307/1311780

    Article  Google Scholar 

  133. Vincenot CE, Florens FBV, Kingston T (2017) Can we protect island flying foxes? Science 355:1368-1370. doi: https://doi.org/10.1126/science.aam7582

    CAS  Article  PubMed  Google Scholar 

  134. Welbergen JA (2010) Growth, bimaturation, and sexual size dimorphism in wild gray-headed flying foxes (Pteropus poliocephalus). J Mammal 91(1):38-47. doi: https://doi.org/10.1644/09-MAMM-A-157R.1

    Article  Google Scholar 

  135. Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B 275:419-425. doi: https://doi.org/10.1098/rspb.2007.1385

    Article  PubMed  Google Scholar 

  136. Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer, New York Wiles GJ (2005) A checklist of the birds and mammals of Micronesia. Micronesica 38:141-189

    Google Scholar 

  137. Wiles GJ, Fujita MS (1992) Food plants and economic importance of flying foxes on Pacific islands. In: Wilson DE, Graham GL (eds) Pacific Island Flying Foxes: Proceedings of an International Conservation Conference. Biological Report 90(23), US Fish and Wildlife Service, Washington, DC, pp 24-35

    Google Scholar 

  138. Willig MR, Patterson BD, Stevens RD (2003) Patterns of range size, richness, and body size in the Chiroptera. In: Kunz TH, Fenton MB (eds) Bat Ecology. University of Chicago Press, Chicago, pp 580-621

    Google Scholar 

  139. Wilson DE (1973) Bat faunas: a trophic comparison. Syst Zool 22:14-29. doi: https://doi.org/10.2307/2412374

    Article  Google Scholar 

  140. Wilson DE (2015) Bats in Question: the Smithsonian Answer Book. Smithsonian Institution, Washington, DC

  141. Wilson GP (2013) Mammals across the K/Pg boundary in northeastern Montana, USA: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39:429-469. doi: https://doi.org/10.1666/12041

    Article  Google Scholar 

  142. Yovel Y, Geva-Sagiv M, Ulanovsky N (2011) Click-based echolocation in bats: not so primitive after all. J Comp Physiol A 197(5):515-530. doi: https://doi.org/10.1007/s00359-011-0639-4

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank C. Conroy, E. Lacey, and M. Nachman at the Museum of Vertebrate Zoology (University of California, Berkeley) for their assistance accessing collections. We also thank L. Avila, M. Brasil, J. Carlson, R. Jabbour, P. Kloess, and C. Taylor for their greatly appreciated insights and support. We would like to express our gratitude to two anonymous reviewers and Editor-in-Chief John R. Wible for their thoughtful comments and suggestions that greatly improved this manuscript. M.E.Z. wrote the manuscript, ran the analyses, and helped collect the data. T.A.M. ran the phylogenetic analyses and contributed to writing the manuscript. R.R.D. and S.R. helped collect the data. L.J.H. directed the larger project in which this study was done and edited the manuscript. All authors contributed to the intellectual context and interpretation.

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Madeleine E. Zuercher.

Electronic supplementary material

ESM 1

(XLSX 12 kb)

ESM 2

(XLSX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuercher, M.E., Monson, T.A., Dvoretzky, R.R. et al. Dental Variation in Megabats (Chiroptera: Pteropodidae): Tooth Metrics Correlate with Body Size and Tooth Proportions Reflect Phylogeny. J Mammal Evol (2020). https://doi.org/10.1007/s10914-020-09508-7

Download citation

Keywords

  • Dentition
  • Yinpterochiroptera
  • Flying fox
  • Old World fruit bats
  • Diet
  • Frugivory
  • Nectarivory