Skip to main content

Advertisement

Log in

An Ecomorphological Comparative Study of Extant and Late Holocene Sigmodontinae (Rodentia, Cricetidae) Assemblages from Central-Eastern Argentina

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The anthropic effect associated with worldwide European settlements over the last 500 years has caused dramatic environmental changes, modified regional patterns of biodiversity, and often led to local or complete extinctions. The sigmodontine rodents of Bahía Samborombón (Humid Pampas, central-eastern Argentina) constitute a good case study: a late Holocene archaeological site allowed us to compare a pre-European settlement assemblage (12 species) with the extant one (nine species). We used linear morphometrics (16 cranial and ten mandibular measurements) to assess interspecific morphological variations of the masticatory apparatus in relation to dietary habits for each assemblage. Even though sigmodontines have a tendency towards omnivory, groups based on dietary preference only overlapped partially. Size was one of the main variables involved in niche segregation, and shape characteristics such as rostrum elongation or mandible robustness were linked to different diets. We found that a combination of dietary preference and size was associated with extinctions. The main morphospace change between the two assemblages was related to the local extinction of the three greater insectivores and the smallest graminivore, located towards the center of the assemblage’s morphospace. An insectivore was incorporated, involving no significant changes in the general morphospace. Graminivores and larvivores were not affected. Our study sheds light on the causes of local extinctions of small mammals at the Humid Pampas, a phenomenon that had never been studied from an ecomorphological approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberio C, Comparatore V (2014) Patterns of woody plant invasion in an Argentinean coastal grassland. Acta Oecol 54:65–71. https://doi.org/10.1016/j.actao.2013.09.003

    Article  Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2011) Ecological and phylogenetic influence on mandible shape variation of South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linn Soc 102:828–837. https://doi.org/10.1111/j.1095-8312.2011.01622.x

    Article  Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2015) The role of evolutionary integration in the morphological evolution of the skull of caviomorph rodents (Rodentia: Hystricomorpha). Evol Biol 42:312–327. https://doi.org/10.1007/s11692-015-9326-7

    Article  Google Scholar 

  • Arbour JH, Brown CM (2014) Incomplete specimens in geometric morphometric analyses. Methods Ecol Evol 5:16–26. https://doi.org/10.11646/zootaxa.4429.1.1

    Article  Google Scholar 

  • Azpiroz AB, Isacch JP, Dias RA, Di Giacomo AS, Suertegaray Fontana C, Morales Palarea C (2012) Ecology and conservation of grassland birds in southeastern South America: a review. J Field Ornithol 83:217–246. https://doi.org/10.1111/j.1557-9263.2012.00372.x

    Article  Google Scholar 

  • Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45:175–196

  • Benson RBJ, Starmer-Jones E, Close RA, Walsh SA (2017) Comparative analysis of vestibular ecomorphology in birds. J Anat 231:990–1018. https://doi.org/10.1111/joa.12726

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilenca DN, González-Fisher CM, Teta P, Zamero M (2007) Agricultural intensification and small mammal assemblages in agroecosystems of the rolling pampas, central Argentina. Agric Ecosyst Environ 121:371–375. https://doi.org/10.1016/j.agee.2006.11.014

    Article  Google Scholar 

  • Bock WJ (1990) From Biologische Anatomie to Ecomorphology. Proceedings of the 3rd International Congress of Vertebrate Morphology. Neth J Zool 40:254–277

    Article  Google Scholar 

  • Bodmer RE (1989) Ungulate biomass in relation to feeding strategy within Amazonian forest. Oecologia 81:547–550. https://doi.org/10.1007/BF00378967

    Article  PubMed  Google Scholar 

  • Brown JH, West GB (2000) Scaling in Biology. Oxford University Press, New York

    Google Scholar 

  • Burgos JJ (1968) El clima de la provincia de Buenos Aires en relación con la vegetación natural y el suelo. In: Cabrera AL (ed) Flora de la Provincia de Buenos Aires, Parte I. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 33–99

    Google Scholar 

  • Busch M, Hodara K (2010) Uso y selección de hábitat y competencia interespecífica en roedores sigmodontinos de la región pampeana. In: Polop JJ, Busch M (eds) Biología y ecología de pequeños roedores en la región pampeana de Argentina. Universidad Nacional de Córdoba, Córdoba, pp 147–171

    Google Scholar 

  • Cabrera AL (1968) Vegetación de la Provincia de Buenos Aires. In: Cabrera AL (ed) Flora de la Provincia de Buenos Aires, Parte I. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 101–134

    Google Scholar 

  • Calder WA (1996) Size, Function and Life History. Harvard University Press, Cambridge

    Google Scholar 

  • Cassini GH (2013) Skull geometric morphometrics and paleoecology of Santacrucian (late early Miocene; Patagonia) native ungulates (Astrapotheria, Litopterna, and Notoungulata). Ameghiniana 50:193–216. https://doi.org/10.5710/AMGH.7.04.2013.606

    Article  Google Scholar 

  • Cassini GH, Cerdeño ME, Villafañe A, Muñoz NA (2012) Paleobiology of Santacrucian native ungulates (Meridiungulata; Astrapotheria, Litopterna and Notoungulata). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: High Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, pp 243–286

  • Cassini GH, Flores DA, Vizcaíno SF (2015) Postnatal ontogenetic scaling of pampas deer (Ozotoceros bezoarticus celer: Cervidae) cranial morphology. Mammalia 79:69–79. https://doi.org/10.1515/mammalia-2013-0051

    Article  Google Scholar 

  • Cassini GH, Mendoza M, Vizcaíno SF, Bargo MS (2011) Inferring habitat and feeding behaviour of early Miocene notoungulates from Patagonia. Lethaia 44:153–165. https://doi.org/10.1111/j.1502-3931.2010.00231.x

  • Cassini GH, Vizcaíno SF (2012) An approach to the biomechanics of the masticatory apparatus of early Miocene (Santacrucian Age) South American ungulates (Astrapotheria, Litopterna, and Notoungulata): moment arm estimation based on 3D landmarks. J Mammal Evol 19:9–25. https://doi.org/10.1007/s10914-011-9179-5

  • Céspedes del Castillo G (2009) América Hispánica, 1492–1898. Marcial Pons, Ediciones de Historia, Barcelona

  • Clauss M, Kaiser T, Hummel J (2008) The morphophysiological adaptations of browsing and grazing mammals. In: Gordon IJ, Prins HHT (eds) The Ecology of Browsing and Grazing. Springer-Verlag, Berlin, pp 47–88

    Chapter  Google Scholar 

  • Clauss M, Nunn C, Fritz J, Hummel J (2009) Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp Biochem Physiol A Mol Integr Physiol 154:376–382. https://doi.org/10.1016/j.cbpa.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  • De Esteban-Trivigno S (2011) Ecomorfología de xenartros extintos: análisis de la mandíbula con métodos de morfometría geométrica. Ameghiniana 48:381–398. https://doi.org/10.5710/AMGH.v48i3(269)

    Article  Google Scholar 

  • Dellafiore CM, Polop JJ (2010) La alimentación en los sigmodontinos de la región central de Argentina. In: Polop JJ, Busch M (eds) Biología y ecología de pequeños roedores en la región pampeana de Argentina. Universidad Nacional de Córdoba, Córdoba, pp 173–199

    Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672. doi: 0003-0147/85/2505-W04$02.00

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514. https://doi.org/10.1111/j.0030-1299.2008.16215.x

    Article  Google Scholar 

  • Druzinsky RE (2015) The oral apparatus of rodents: variations on the theme of a gnawing machine. In: Cox PG, Hautier L (eds) Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press, Cambridge, pp 321–349

  • Ellis BA, Mills JN, Glass GE, McKee KT Jr, Enria DA (1998) Dietary Habits of the Common Rodents in an Agrecosystem in Argentina. Other Publications in Zoonotics and Wildlife Disease. https://digitalcommons.unl.edu/zoonoticspub/87. Accessed 17 May 2018

  • Ellis BA, Mills JN, Kennedy EJT, Maiztegui JI, Childs JE (1995) The relationship among diet, alimentary tract morphology, and life history for five species of rodents from the central Argentine pampa. Acta Theriol 39:345–355. https://doi.org/10.4098/AT.arch.94-40

    Article  Google Scholar 

  • Fernández G, Beade M, Pujol E, Mermoz M (2004) Plan de manejo de la Reserva de Vida Silvestre “Campos del Tuyú.” Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Fernández Blanco MV, Cassini GH, Bona P (2018) Skull ontogeny of extant caimans: a three-dimensional geometric morphometric approach. Zoology 129:69–81. https://doi.org/10.1016/j.zool.2018.06.003

    Article  PubMed  Google Scholar 

  • Flores DA, Casinos A (2011) Cranial ontogeny and sexual dimorphism in two New World monkeys: Alouatta caraya (Atelidae) and Cebus apella (Cebidae). J Morphol 272:744–757. https://doi.org/10.1002/jmor.10947

    Article  PubMed  Google Scholar 

  • Forrest FL, Plummer TW, Raaum RL (2018) Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: implications for hominin paleoenvironmental reconstruction. J Hum Evol 114:20–34. https://doi.org/10.1016/j.jhevol.2017.09.010

    Article  PubMed  Google Scholar 

  • Fraser D, Theodor JM (2011a) Anterior dentary shape as an indicator of diet in ruminant artiodactyls. J Vertebr Paleontol 31:1366–1375. https://doi.org/10.1080/039.031.0605

    Article  Google Scholar 

  • Fraser D, Theodor JM (2011b) Comparing ungulate dietary proxies using discriminant function analysis. J Morphol 272:1513–1526. https://doi.org/10.1002/jmor.11001

    Article  PubMed  Google Scholar 

  • Geise L, Astúa de Moraes D, Da Silva HS (2005) Morphometric differentiation and distributional notes of three species of Akodon (Muridae, Sigmodontinae, Akodontini) in the Atlantic coastal area of Brazil. Arq Mus Nac Rio J 63:63–74

    Google Scholar 

  • Ghersa CM, de la Fuente E, Suarez S, León RJC (2002) Woody species invasion in the rolling Pampa grasslands, Argentina. Agric Ecosyst Environ 88:271–278. https://doi.org/10.1016/S0167-8809(01)00209-2

    Article  Google Scholar 

  • Giannini NP, García-López DA (2014) Ecomorphology of mammalian fossil lineages: identifying morphotypes in a case study of endemic South American ungulates. J Mammal Evol 21:195–212. https://doi.org/10.1007/s10914-013-9233-6

  • Giannini NP, Segura V, Giannini MI, Flores DA (2010) A quantitative approach to the cranial ontogeny of the puma. Mammal Biol 75:547–554. https://doi.org/10.1016/j.mambio.2009.08.001

    Article  Google Scholar 

  • González EM, Pardiñas FJ (2002) Deltamys kempi. Mammal Spec 711:1–4. https://doi.org/10.1644/0.711.1/2600496

    Article  Google Scholar 

  • Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32. https://doi.org/10.1111/j.1095-8312.1989.tb02003.x

    Article  Google Scholar 

  • Grodziński W, French NR (1983) Production efficiency in small mammal populations. Oecologia 56:41–49. https://doi.org/10.1007/BF00378215

    Article  PubMed  Google Scholar 

  • Hannah L, Carr JL, Lankerani A (1995) Human disturbance and natural habit: a biome level analysis of a global data set. Biodivers Conserv 4:128–155. https://doi.org/10.1007/BF00137781

    Article  Google Scholar 

  • Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. J Morphol 273:1319–1337. https://doi.org/10.1002/jmor.20061

    Article  PubMed  Google Scholar 

  • Hirst SM (1975) Ungulate habitat relationships in a South African woodland savanna ecosystem. Wildl Monogr 44:1–60

    Google Scholar 

  • Janis CM (2000) Patterns in the evolution of herbivory in large terrestrial mammals: the Paleogene of North America. In: Sues HD (ed) Evolution of Herbivory in Terrestrial Vertebrates. Cambridge University Press, Cambridge, pp 168–222

    Chapter  Google Scholar 

  • Janis CM (2007) Artiodactyl paleoecology and evolutionary trends. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. John Hopkins University Press, Baltimore, pp 292–302

    Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–267. https://doi.org/10.1163/156853974X00345

    Article  Google Scholar 

  • Jarman PJ, Sinclair ARE (1979) Feeding strategy and the pattern of resource-partitioning in ungulates. In: Sinclair ARE, Norton-Griffiths M (eds) Serengueti, Dynamics of an Ecosystem. Chicago University Press, Chicago, pp 130–163

    Google Scholar 

  • Kay EH, Hoekstra HE (2008) Rodents. Curr Biol 18:R406–R410. https://doi.org/10.1016/j.cub.2008.03.019

    Article  CAS  PubMed  Google Scholar 

  • Kerley GIH, Whitford WG (1994) Desert-dwelling small mammals as granivores: intercontinental variations. Aust J Zool 42:543–555. https://doi.org/10.1071/ZO9940543

    Article  Google Scholar 

  • Kraatz BP, Sherratt E, Bumacod N, Wedel MJ (2015) Ecological correlates to cranial morphology in leporids (Mammalia, Lagomorpha). PeerJ 3:e844. https://doi.org/10.7717/peerj.844

    Article  PubMed  PubMed Central  Google Scholar 

  • Law CJ, Duran E, Hung N, Richards E, Santillan I, Mehta RS (2018) Effects of diet on cranial morphology and biting ability in musteloid mammals. J Evol Biol 31:1918–1931. https://doi.org/10.1111/jeb.13385

    Article  PubMed  Google Scholar 

  • Leveau LM, Teta P, Bogdaschewsky R, Pardiñas UFJ (2006) Feeding habits of the Barn owl (Tyto alba) along a longitudinal-latitudinal gradient in central Argentina. Ornithol Neotrop 17:353–362

    Google Scholar 

  • Libardi GS, Percequillo AR (2016) Variation of craniodental traits in russet rats Euryoryzomys russatus (Wagner, 1848) (Rodentia: Cricetidae: Sigmodontinae) from eastern Atlantic Forest. Zool Anz 262:1–18. https://doi.org/10.1016/j.jcz.2016.03.005

    Article  Google Scholar 

  • Liem KF (1991) Functional morphology. In: Keenleyside MHA (ed) Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman & Hall, London, pp 129–150

    Google Scholar 

  • Lucas PW (2004) Dental Functional Morphology. How Teeth Work. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • MacPhee RDE, Flemming C (1999) Requiem Ӕternam: the last five hundred years of mammalian species extinctions. In: MacPhee RDE (ed) Extinctions in Near Time. Kluwer Academic/Plenum Publishers, New York, pp 333–371

    Chapter  Google Scholar 

  • Maestri R, Luza AL, de Barros LD, Hartz SM, Ferrari A, de Freitas TRO, Duarte LDS (2016a) Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. J Biogeogr 43:1192–1202. https://doi.org/10.1111/jbi.12718

    Article  Google Scholar 

  • Maestri R, Patterson BD, Fornel R, Monteiro LR, De Freitas TRO (2016b) Diet, bite force and skull morphology in the generalist rodent morphotype. J Evol Biol 29:2191–2204. https://doi.org/10.1111/jeb.12937

    Article  CAS  PubMed  Google Scholar 

  • Marrero HJ, Torreta JP, Medan D (2014) Effect of land use intensification on specialization in plant–floral visitor interaction networks in the pampas of Argentina. Agric Ecosyst Environ 188:63–71. https://doi.org/10.1016/j.agee.2014.02.017

    Article  Google Scholar 

  • Massoia E, Fornes A (1964) Notas sobre el género Scapteromys (Rodentia-Cricetidae). I. Sistemática, distribución geográfica y rasgos etoecológicos de Scapteromys tumidus (Waterhouse). Physis 24:279–297

    Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ, Georgiadis NJ (1986) Ecology of African grazing and browsing mammals. Annu Rev Ecol Evol Syst 17:39–65

    Article  Google Scholar 

  • Mendoza M, Palmqvist P (2006) Characterizing adaptive morphological patterns related to diet in Bovidae (Mammalia: Artiodactyla). Acta Zool Sin 52:988–1008

  • Merritt JF (2010) The Biology of Small Mammals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Miñarro F, Bilenca D (2008) The Conservation Status of Temperate Grasslands in Central Argentina. Fundación Vida Silvestre Argentina, Special Report, Buenos Aires

  • Molina GAR, Poggio SL, Ghersa CM (2014) Epigeal arthropod communities in intensively farmed landscapes: effects of land use mosaics, neighbourhood heterogeneity, and field position. Agric Ecosyst Environ 192:135–143. https://doi.org/10.1016/j.agee.2014.04.013

    Article  Google Scholar 

  • Montoya AJ (1984) Cómo evolucionó la ganadería en la época del virreynato. Colección esquemas históricos N° 35. Plus Ultra, Buenos Aires

  • Morales MM, Giannini NP (2013) Ecomorphology of the African felid ensemble: the role of the skull and postcranium in determining species segregation and assembling history. J Evol Biol 26:980–992. https://doi.org/10.1111/jeb.12108

    Article  CAS  PubMed  Google Scholar 

  • Morgan CC, Verzi DH, Olivares AI, Vieytes EC (2017) Craniodental and forelimb specializations for digging in the South American subterranean rodent Ctenomys (Hystricomorpha, Ctenomyidae). Mammal Biol 87:118–124. https://doi.org/10.1016/j.mambio.2017.07.005

    Article  Google Scholar 

  • Mosimann JE (1970) Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J Am Stat Assoc 65:930–945

  • Motta PJ, Norton SF, Luczkjovich JJ (1995) Perspectives on the ecomorphology of fishes. Environ Biol Fish 44:11–20. https://doi.org/10.1007/BF00005904

    Article  Google Scholar 

  • Moyano RS, Cassini GH, Giannini NP (2018) Skull ontogeny of the hyraxes Procavia capensis and Dendrohyrax arboreus (Procaviidae: Hyracoidea). J Mammal Evol. https://doi.org/10.1007/s10914-017-9424-7

  • Musser GG, Carleton MD, Brother EM, Gardner AL (1998) Systematic studies of oryzomine rodents (Muridae, Siugmodontinae): diagnosis and distributions of species formerly assigned to Oryzomis “capito.” Bull Am Mus Nat Hist 236:1–376

    Google Scholar 

  • Myers P (1989) A preliminary revision of the varius group of Akodon (A. dayi, dolores, molinae, neocenus, simulator, toba, and varius). In: Redford KH, Eisenberg JF (eds) Advances in Neotropical Mammalogy. Sandhill Crane Press, Gainesville, pp 5–54

    Google Scholar 

  • Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fish 44:287–304. https://doi.org/10.1007/BF00005921

    Article  Google Scholar 

  • Oba S, Sato M, Takemasa I, Monden M, Matsubara K, Ishii S (2003) A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19:2088–2096. https://doi.org/10.1093/bioinformatics/btg287

    Article  CAS  PubMed  Google Scholar 

  • Olsen AM (2017) Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct Ecol 31:1985–1995. https://doi.org/10.1111/1365-2435.12890

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Pardiñas UFJ (1999) Los roedores muroideos del Pleistoceno Tardío-Holoceno en la Región Pampeana (sector este) y Patagonia (República Argentina): aspectos taxonómicos, importancia bioestratigráfica y significación paleoambiental. Dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata

  • Pardiñas UFJ, Cañón Valenzuela C, Salazar-Bravo J (2017b) A matter of weight: critical comments on the basic data analysed by Maestri et al. (2016) in Journal of Biogeography, 43, 1192–1202. J Biogeogr 43:1192–1202. https://doi.org/10.1111/jbi.13098

  • Pardiñas UFJ, Galliari CA, Cirignoli S (2004) Distribution of Pseudoryzomys simplex (Rodentia: Cricetidae) in Argentina. Mastozool Neotrop 11:105–108.

    Google Scholar 

  • Pardiñas UFJ, Myers P, León-Paniagua L, Ordóñez Garza N, Cook JA, Kryštufek B, Haslauer R, Bradley RD, Shenbrot GI, Patton JL (2017a) Family Cricetidae (true hamsters, voles, lemmings and New World rats and mice). In: Wilson DE, Lacher TE Jr, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 7. Rodents II. Lynx Edicions, Barcelona, pp 204–279

  • Pardiñas UFJ, Teta P (2015) Genus Deltamys Thomas, 1917. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America. Volume 2 – Rodents. University of Chicago Press, Chicago, pp 219–222

  • Pardiñas UFJ, Teta P, Bilenca D (2010a) Análisis biogeográfico de los roedores sigmodontinos de la provincia de Buenos. In: Polop JJ, Busch M (eds) Biología y ecología de pequeños roedores en la región pampeana de Argentina. Universidad Nacional de Córdoba, Córdoba, pp 37–57

  • Pardiñas UFJ, Teta P, D’Elía G (2010b) Roedores sigmodontinos en la región pampeana: historia evolutiva, sistemática y taxonomía In: Polop JJ, Busch M (eds) Biología y ecología de pequeños roedores en la región pampeana de Argentina. Universidad Nacional de Córdoba, Córdoba, pp 9–36

    Google Scholar 

  • Pardiñas UFJ, Tonni EP (2000) A giant vampire (Mammalia, Chiroptera) in the late Holocene from the Argentinean pampas: palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 160:213–221. https://doi.org/10.1016/S0031-0182(00)00067-5

  • Paruelo JM, Guerschman JP, Verón SR (2005) Cambios en el patrón espacial de uso de la tierra en Argentina. Ciencia Hoy 15:14–23

    Google Scholar 

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America. Volume 2 – Rodents. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Patterson BD (1999) Contingency and determinism in mammalian biogeography: the role of history. J Mammal 80:345–360. https://doi.org/10.2307/1383284

    Article  Google Scholar 

  • Pearson OP, Martin S, Bellati J (1987) Demography and reproduction of the silky desert mouse (Eligmodontia) in Argentina. Fieldiana Zool NS39 - Studies in Neotropical Mammalogy: 433–446

  • Perrin MR, Curtis BA (1980) Comparative morphology of the digestive system of 19 species of southern African myomorph rodents in relation to diet and evolution. S Afr J Zool 15:22–33. https://doi.org/10.1080/02541858.1980.11447680

    Article  Google Scholar 

  • Peters RH (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Price SA, Schmitz L (2016) A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos Trans R Soc B 371:20150228. https://doi.org/10.1098/rstb.2015.0228

    Article  CAS  Google Scholar 

  • Prieto AR (2000) Vegetational history of the late glacial–Holocene transition in the grasslands of eastern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 157:167–188. https://doi.org/10.1016/S0031-0182(99)00163-7

    Article  Google Scholar 

  • R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 14 December 2017

  • Rapoport EH (1996) The flora of Buenos Aires: low richness or mass extinction? Int J Ecol Environ Sci 22:217–242

    Google Scholar 

  • Samuels JX (2009) Cranial morphology and dietary habits of rodents. Zool J Linn Soc 156:864–888. https://doi.org/10.1111/j.1096-3642.2009.00502.x

    Article  Google Scholar 

  • Schiaffini MI, Prevosti FJ (2014) Trophic segregation of small carnivorans (Carnivora: Mustelidae and Mephitidae) from the southern cone of South America. J Mammal Evol 21:407–416. https://doi.org/10.1007/s10914-013-9240-7

    Article  Google Scholar 

  • Schulze H, Preuschoft H, Groves C (2003) Standardized body measurement and description of lorises and pottos for taxonomic purposes. Conservation database for lorises (Loris, Nycticebus) and pottos (Arctocebus, Perodicticus), prosimian primates. http://www.loris-conservation.org/database/population_database/measure_index.html. Accessed 22 May 2018

  • Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Río de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the World 8A - Natural Grasslands: Introduction and Western Hemisphere. Elsevier, New York, pp 367–407

  • Spencer LM (1995) Morphological correlates of dietary resource partitioning in the African Bovidae. J Mammal 76:448–471. https://doi.org/10.2307/1382355

    Article  Google Scholar 

  • Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167. https://doi.org/10.1093/bioinformatics/btm069

    Article  CAS  PubMed  Google Scholar 

  • Steadman DW, Martin PS (2003) The late Quaternary extinction and future resurrection of birds on Pacific islands. Earth-Sci Rev 61:133–147. https://doi.org/10.1016/S0012-8252(02)00116-2

    Article  Google Scholar 

  • Stroud JT, Bush MR, Ladd MC, Nowicki RJ, Shantz AA, Sweatman J (2015) Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol Evol 5:4757–4765. https://doi.org/10.1002/ece3.1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez OV, Bonaventura SM (2001) Habitat use and diet in sympatric species of rodents of the low Paraná delta, Argentina. Mammalia 65:167–176. https://doi.org/10.1515/mamm.2001.65.2.167

    Article  Google Scholar 

  • Teta P, Formoso A, Tammone M, de Tomasso DC, Fernández FJ, Torres J, Pardiñas UFJ (2014) Micromamíferos, cambio climático e impacto antrópico: ¿Cuánto han cambiado las comunidades del sur de América del Sur en los últimos 500 años? Therya 5:7–38. https://doi.org/10.12933/therya-14-183

    Article  Google Scholar 

  • Teta P, Pardiñas UFJ, Silveira M, Aldazabal V, Eugenio E (2013) Roedores sigmodontinos del sitio arqueológico “El Divisadero Monte 6” (Holoceno tardío, Buenos Aires, Argentina): taxonomía y reconstrucción ambiental. Mastozool Neotrop 20:171–177

    Google Scholar 

  • Thorpe SK (2016) Symposium on primate ecomorphology: introduction. J Anat 228:531–533. https://doi.org/10.1111/joa.12455

    Article  PubMed  PubMed Central  Google Scholar 

  • Tognetti PM, Chaneton EJ, Omacini M, Trebino HJ, León RJC (2010) Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biol Cons 143:2494–2503. https://doi.org/10.1016/j.biocon.2010.06.016

    Article  Google Scholar 

  • Tonni EP, Cione A, Figini A (1999) Predominance of arid climates indicated by mammals in the pampas of Argentina during the late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 147:257–281. https://doi.org/10.1016/S0031-0182(98)00140-0

    Article  Google Scholar 

  • Turvey ST (ed) (2009) Holocene Extinctions. Oxford University Press, Oxford

    Google Scholar 

  • Turvey ST, Fritz SA (2011) The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos Trans R Soc B 366:2564–2576. https://doi.org/10.1098/rstb.2011.0020

    Article  Google Scholar 

  • Van Valkenburgh B (1994) Ecomorphological analysis of fossil vertebrates and their paleocommunities. In: Wainwright PC, Reilly SM (eds) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp 140–166

    Google Scholar 

  • Van der Klaauw CJ (1948) Ecological studies and reviews. IV. Ecological morphology. Bibliogr Biotheor 4:23–111

    Google Scholar 

  • Vázquez F (2017) Estrategias de explotación y uso de los recursos vegetales en la cuenca inferior del Plata. La presencia de los horticultores amazónicos. Dissertation, Facultad de Filosofía y Letras, Universidad de Buenos Aires

  • Verzi DH, Olivares AI (2006) Craniomandibular joint in South American burrowing rodents (Ctenomyidae): adaptations and constraints related to a specialized mandibular position in digging. Mammal Biol 270:488–501. https://doi.org/10.1016/j.mambio.2009.03.011

    Article  Google Scholar 

  • Villafañe IE, Miño M, Cavia R, Hodara K, Courtalón P, Suárez O, Busch M (2005) Guía de roedores de la provincia de Buenos Aires. L.O.L.A., Buenos Aires

  • Vizcaíno SF (2000) Vegetation partitioning among Lujanian (late Pleistocene-early Holocene) armored herbivores in the pampean region. Curr Res Pleistoc 17:135–137

    Google Scholar 

  • Vizcaíno SF, Bargo MS (1998) The masticatory apparatus of Eutatus (Mammalia, Cingulata) and some allied genera. Evolution and paleobiology. Paleobiology 24:371–383. https://doi.org/10.1666/0094-8373(1998)024[0371:TMAOTA]2.3.CO;2

  • Vizcaíno SF, Bargo MS, Cassini GH, Toledo N (2016) Forma y función en paleobiología de vertebrados. Editorial de la Universidad de La Plata (EDULP), La Plata, Buenos Aires

  • Vizcaíno SF, Cassini GH, Fernicola JC, Bargo MS (2011) Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra) Ameghiniana 48:305–319. https://doi.org/10.5710/AMGH.v48i3(364)

    Article  Google Scholar 

  • Vizcaíno SF, Fariña RA, Zárate MA, Bargo MS, Schultz P (2004) Palaeoecological implications of the mid-Pliocene faunal turnover in the Pampean region (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 213:101–113. https://doi.org/10.1016/j.palaeo.2004.07.004

    Article  Google Scholar 

  • Wainwright PC, Reilly SM (1994) Ecological Morphology. Integrative Organismal Biology. University of Chicago Press, Chicago

    Google Scholar 

  • Wang D-H, Pei Y-X, Yang JC, Wang ZW (2003) Digestive tract morphology and food habits in six species of rodents. Folia Zool 52:51–55

    Google Scholar 

  • Zalba SM, Villamil C (2002) Woody plant invasion in relictual grasslands. Biol Invasions 4:55–72. https://doi.org/10.1023/A:1020532609792

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Sergio Lucero (MACN-Ma), Sergio Bogan (FHNFA), Diego Verzi, and Itatí Olivares (MLP) for their excellent predisposition and access to mammal collections. Orientation provided by Julio Torres has been a great help in age determination of Holochilus specimens. We wish to acknowledge the assistance provided by Diego Peralta with the early version of the manuscript, by Karl Sandager, Juan Jelf, and Andrew Milton with English revisions, and by the reviewers. Our special thanks are extended to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and to Sociedad Argentina para el Estudio de los Mamíferos (SAREM) for the grants that partially funded the study of the collections, and to Sergio Vizcaíno for his guidance and support. This is a contribution to the projects PICT 201-0537, 2016-2665 Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and CDD-CB 650-14 Universidad Nacional de Luján (UNLu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Barbero.

Electronic supplementary material

ESM 1

(PDF 33.2 kb)

ESM 2

(PDF 24.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, S., Teta, P. & Cassini, G.H. An Ecomorphological Comparative Study of Extant and Late Holocene Sigmodontinae (Rodentia, Cricetidae) Assemblages from Central-Eastern Argentina. J Mammal Evol 27, 697–711 (2020). https://doi.org/10.1007/s10914-020-09497-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09497-7

Keywords

Navigation