Skip to main content

Advertisement

Log in

Molecular Phylogenetics of Bradypus (Three-Toed Sloth, Pilosa: Bradypodidae, Mammalia) and Phylogeography of Bradypus variegatus (Brown-Throated Three-Toed Sloth) with Mitochondrial Gene Sequences

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Xenarthra (sloths, anteaters, and armadillos) are the quintessential South American mammals. Among the xenarthrans, sloths constitute the most diverse paleontologically with almost 100 fossil genera recorded. However, this abundant sloth fauna in the Americas became extinct around 10,000 years ago. Only six species belonging to two genera, Bradypus (four three-toed sloth species) and Choloepus (two two-toed sloth species) are alive today in Central and South America. Bradypus variegatus is the sloth species with the widest geographical distribution in the Neotropics. Some regional population genetics have been reported, especially in Brazil, but with limited sample sizes. Herein, we sequenced 77 samples of Bradypys variegatus (Panama, Colombia, Venezuela, Peru, Bolivia, and Brazil; 65 new samples and 12 from GenBank), plus one B. tridactylus, one B. pygmaeus, and five B. torquatus (one new and four from GenBank) at the mitochondrial (mt) control region. Additionally, 25 of these samples, representing the four species, were sequenced for the entire mitochondrial genome. Our results indicate that there are at least six main genetically different haplogroups of B. variegatus. They are the trans-Andean, western Amazon (with some other internal groups), Tapajos River, Tocantins River, Negro River, and the Brazilian eastern Atlantic forest (with two recognizable sub-groups in northern and southern areas) ones, with the ancestor of the trans-Andean haplogroup the first to diverge. A very strong genetic heterogeneity and a striking spatial pattern were detected among these different geographical areas, with the trans-Andean, western Amazon, and Tocantins populations showing the highest levels of genetic diversity, meanwhile the Tapajos and the Brazilian eastern populations yielding lower levels of genetic diversity. The following conclusions were as follows: 1) B. torquatus should be considered as a different genus (Scaeopus) because of its extreme genetic differences from other Bradypus taxa as was previously claimed by other authors; 2) B. pygmaeus is not a recent species adapted to Holocene island environments from the Central America B. variegatus group; and 3) if we adopt a strict version of the Phylogenetic Species Concept (PSC), the highly significant monophyletic clade of the trans-Andean B. variegatus population should be defined as a valid and differentiated species of three-toed sloth. However, we are reluctant to define this population as a new species until new data shows possible strong karyotype differences and/or pre- or post-zygote reproductive barriers (Biological Species Concept, BSC) between the trans and the cis-Andean populations of the three-toed brown-throated sloth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723

    Google Scholar 

  • Alston ER (1880) Biologia Centrali-Americana. Mammalia. Vol. 1. Taylor and Francis, London

    Google Scholar 

  • Anderson RP, Handley CO (2001) A new species of three-toed sloth (Mammalia: Xenarthra) from Panama, with a review of the genus Bradypus. Proc Biol Soc Wash 114: 1–33

    Google Scholar 

  • Anderson RP, Handley CO (2002) Dwarfism in insular sloths: biogeography, selection, and evolutionary rate. Evolution 56: 1045–1058

    PubMed  Google Scholar 

  • Arnason U, Gullberg A, Janke, A (1997) Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and ferungulates. Mol Biol Evol 14: 762–768

    CAS  PubMed  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18: 489–522

    Google Scholar 

  • Barros MC, Sampaio I, Schneider H (2003) Phylogenetic analysis of 16S mitochondrial DNA data in sloths and anteaters. Genet Mol Biol 26: 5–12

    CAS  Google Scholar 

  • Barros M C, Sampaio I, Schneider H (2008) Novel 12S mtDNA findings in sloths (Pilosa, Folivora) and anteaters (Pilosa, Vermilingua) suggest a true case of long branch attraction. Genet Mol Biol 31: 793–799

    Google Scholar 

  • Bates JM, Hackett SJ, Cracraft J (1998) Area relationships in the Neotropical lowlands: an hypothesis based on raw distributions of passerine birds. J Biogeogr 25: 783–793

    Google Scholar 

  • Bensasson D, Zhang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16: 314–321

    CAS  PubMed  Google Scholar 

  • Boubli JP, Rylands AB, Farias IP, Alfaro ME, Lynch-Alfaro JW (2012) Cebus phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. Am J Primatol 74: 381–393

    PubMed  Google Scholar 

  • Britton SW, Kline RF (1939) Augmentation of activity in the sloth by adrenal extract, emotion and other conditions. Am J Physiol 127: 127–130

    CAS  Google Scholar 

  • Brouns G, De Wulf A, Constales D (2003) Delaunay triangulation algorithms useful for multibeam echosounding. J Surv Eng 129:79–84

    Google Scholar 

  • Cabrera A (1958) Catálogo de los mamíferos de América del Sur. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires Argentina Zoologia 4: 1–308

    Google Scholar 

  • Cartelle C (1994) Tempo passado. Mamíferos do Pleistoceno em Minas Gerais. Editora Palco, Belo Horizonte

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552

    CAS  PubMed  Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and Environment in Tropical America. University of Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30: 71–86

    Google Scholar 

  • Couzzol MA, Clozato CL, Holanda EC, Rodrigues FHG, Nienow S, Thoisy B, Redondo RAF, Santos FR (2013) A new species of tapir from the Amazon. J Mammal 94: 1331–1345

    Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. In: Johnston RJ (ed) Current Ornithology. Vol I. Plenum Press, New York, pp 159–187

    Google Scholar 

  • Da Silva JMC, Rylands AB, Fonseca GAB (2005) The fate of the Amazonian areas of endemism. Conserv Biol 19: 689–694

    Google Scholar 

  • Delsuc F, Vizcaíno SF, Douzery EJP (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4: 11

    PubMed  PubMed Central  Google Scholar 

  • De Vivo M, Carmignotto AP (2004) Holocene vegetation change and the mammal faunas of South America and Africa. J Biogeogr 31: 943–957

    Google Scholar 

  • Ditchfield AD (2000) The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Mol Ecol 9: 1307–1318

    CAS  PubMed  Google Scholar 

  • Dobigny G, Yang F, O’Brien P, Volobouev V, Kovacs A, Pieczarka J, Ferguson-Smith M, Robinson T (2005) Low rate of genomic repatterning in Xenarthra inferred from chromosome painting data. Chromosome Res 13: 651–663

    CAS  PubMed  Google Scholar 

  • Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14: 1154–1166

    CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88

    PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 2571–2581

    CAS  PubMed  Google Scholar 

  • Engelmann GF (1985) The phylogeny of the Xenarthra. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 51–64

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10: 564–567

    PubMed  Google Scholar 

  • Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian isthmus during initial collision with South America. Geology 39: 1007–1010

    CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hotspots in mammalian mitochondrial DNA. Genome Res 16: 215–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner AL (2005) Order Pilosa. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. Johns Hopkins University Press, Baltimore, 100–103

    Google Scholar 

  • Gardner AL (2008) Magnorder Xenarthra. In: Gardner AL (ed) Mammals of South America: Volume 1 Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago, pp 127–128

    Google Scholar 

  • Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar H N, Delsuc F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol 33: 621–642

    CAS  PubMed  Google Scholar 

  • Goldman EA (1913) Descriptions of new mammals from Panama and Mexico. Smithsonian Misc Coll 60: 1–20

    Google Scholar 

  • Gray JE (1871) On a new species of three-toed sloth from Costa Rica. Ann Mag Nat Hist Series 4 7: 302

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. Geol Soc Am Bull 112: 1091–1105

    Google Scholar 

  • Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62: 539–554

    PubMed  PubMed Central  Google Scholar 

  • Haffer J (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Evolution 6: 451–476

    Google Scholar 

  • Haffer J (2008) Hypotheses to explain the origin of species in Amazonia. Braz J Biol 68: 917–947

    CAS  PubMed  Google Scholar 

  • Harpending HC (1994) Signature and ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biol 66: 591–600

    CAS  PubMed  Google Scholar 

  • Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) Genetic structure of ancient human populations. Current Anthropol 34: 483–496

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174

    CAS  PubMed  Google Scholar 

  • Hautier LG, Eastwood BB, Lane J (2014) Patterns of morphological variation of extant sloth skulls and their implication for future conservation efforts. Anatomical Record 297: 979–1008

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931

    CAS  PubMed  Google Scholar 

  • Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin AR, Farias IP (2014) A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS One 9: 1–12

    Google Scholar 

  • Hudson R, Boos D, Kaplan N (1992) A statistical test for detecting population subdivision. Mol Biol Evol 9 : 138–151

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53: 904–913

    PubMed  Google Scholar 

  • International Commission on Stratigraphy (2007) International Stratigraphic Chart. http://www.sratigraphy.org/chus.pdf

  • Jorge W, Orsi-Souza A, Best R (1985) The somatic chromosomes of Xenarthra. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 121–129

    Google Scholar 

  • Jorge W, Pereira HRJ (2008) Chromosomal studies in the Xenarthra. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 196–204

    Google Scholar 

  • Jorge W, Pinder L (1990) Chromosome study on the maned sloth Bradypus torquatus (Bradypodidae, Xenarthra). Cytobios 62: 21–25

    Google Scholar 

  • Kaviar S, Shockey J, Sundberg P (2012) Observations on the endemic pygmy three-toed sloth, Bradypus pygmaeus of Isla Escudo de Veraguas, Panama. PLoS One 7: e49854. doi:https://doi.org/10.1371/journal.pone.0049854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120

    CAS  PubMed  Google Scholar 

  • Lara-Ruiz P, Chiarello A, Santos F (2008) Extreme population divergence and conservation implications for the rare endangered Atlantic Forest sloth, Bradypus torquatus (Pilosa: Bradypodidae). Biol Conserv 141: 1332–1342

    Google Scholar 

  • Lessa EP, Van Valkenburgh B, Fariña RA (1997) Testing hypotheses of differential mammalian extinctions subsequent to the great American biotic interchange. Palaeogeogr Palaeoclimatol Palaeoecol 135: 157–162

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Long A, Martin PS (1974) Death of North American ground sloths. Science 186: 638–640

    CAS  PubMed  Google Scholar 

  • Lönnberg E (1942) Notes on Xenarthra from Brazil and Bolivia. Arkiv Zool 34A(9): 1–58

    Google Scholar 

  • Lyons SK, Smith FA, Brown JH (2004) Of mice, mastodons and men: human mediated extinctions on four continents. Evol Ecol Res 6: 339–358

    Google Scholar 

  • Manel S, Schwartz ML, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76: 173–190

    PubMed  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220

    CAS  PubMed  Google Scholar 

  • Marshall LG, Webb SD, Sepkoski JJ, Raup DM (1982) Mammalian evolution and the great American interchange. Science 215: 1351–1357

    CAS  PubMed  Google Scholar 

  • Mason VC, Li G, Helgen KM, Murphy WJ (2011) Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 21: 1695–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York

    Google Scholar 

  • Miller MP (2005) Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96: 722–724

    CAS  PubMed  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5: 245–261

    Google Scholar 

  • Montes C, Bayona G, Cardona A, Buchs DM, Silva CA, Morón S, Hoyos N, Ramírez DA, Jaramillo CA, Valencia V (2012) Arc-continent collision and orocline formation: closing of the Central American seaway. J Geophys Res 117: B04105. doi:https://doi.org/10.1029/2011JB008959

    Article  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala VC, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American sea way. Science 348: 226–229

    CAS  PubMed  Google Scholar 

  • Moore W (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718–726

    PubMed  Google Scholar 

  • Moraes N, Morgante J, Miyaki C (2002) Genetic diversity in different populations of sloths assessed by DNA fingerprinting. Braz J Biol 62: 503–508

    CAS  PubMed  Google Scholar 

  • Moraes-Barros N, Arteaga MC (2015) Genetic diversity in Xenarthra and its relevance to patterns of Neotropical biodiversity. J Mammal 96: 690–702

    Google Scholar 

  • Moraes-Barros N, Miyaki CY, Morgante JS (2007) Identifying management units in non-endangered species: the example of the sloth Bradypus variegatus Schinz, 1825. Braz J Biol 6: 829–837

    Google Scholar 

  • Moraes-Barros N, Silva JAB, Miyaki CY, Morgante JS (2006) Comparative phylogeography of the Atlantic forest endemic sloth (Bradypus torquatus) and the widespread three-toed sloth (Bradypus variegatus) (Bradypodidae, Xenarthra). Genetica 126: 189–198

    PubMed  Google Scholar 

  • Moraes-Barros N, Silva JA, Morgante JS (2011) Morphology, molecular phylogeny, and taxonomic inconsistencies in the study of Bradypus sloths (Pilosa: Bradypodidae). J Mammal 92: 86–100

    Google Scholar 

  • Morgan C, Foster PG, Webb A, Pisani D, McInerney JO, O’Connell M (2013) Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 30: 2145–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moss WE, Peery MZ, Gutiérrez-Espeleta GA, Vaughan C, Herrera G, Pauli JN (2012) Isolation and characterization of 18 microsatellite markers for the brown-throated three-toed sloth, Bradypus variegatus. Conserv Genet Resourc 4: 1037–1039

    Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WJ, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618

    CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351

    CAS  PubMed  Google Scholar 

  • Nabholz B, Ellegren H, Wolf JB (2012) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes. Mol Biol Evol 30: 272–284

    PubMed  Google Scholar 

  • Nores M (1999) An alternative hypothesis for the origin of Amazonian bird diversity. J Biogeogr 26: 475–485

    Google Scholar 

  • Nores M (2004) The implications of Tertiary and Quaternary Sea level rise events for avian distribution patterns in the lowlands of northern South America. Global Ecol Biogeogr 13: 149–162

    Google Scholar 

  • Nylander JA (2004) MrModeltest v2. Evolutionary Biology Center, Uppsala University

  • Oliveira E, Bergqvist L (1998) A new Paleocene armadillo (Mammalia, Dasypodoidea) from the Itaboraí Basin, Brazil. Paleógeno de América del Sur y de la Península Antártica, Asociación Paleontológica Argentina, Publicación especial 5 30: 35-40

    Google Scholar 

  • Patterson B, Pascual R (1972) The fossil mammal fauna of South America. In: Keast A, Erk FC, Glass B (Eds) Evolution, Mammals and Southern Continents. State University of New York Press, Albany, pp 247–309

    Google Scholar 

  • Paula-Couto C (1979) Tratado de paleomastozoologia. Academia Brasileira de Ciencias, Rio de Janeiro

    Google Scholar 

  • Pellegrino KCM, Rodrigues MT, Waite AN, Morando M, Yassuda YY, Sites JW (2005) Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic forest. Biol J Linn Soc 85: 13–26

    Google Scholar 

  • Philippi RA (1870) Ueber ein neues Faulteir. Archiv für Naturgeschichte 1870: 263–267

    Google Scholar 

  • Pinder L (1993) Body measurements, karyotype, and birth frequencies of maned sloth (Bradypus torquatus). Mammalia 57: 43–48

    Google Scholar 

  • Pinto-da-Rocha R, Da Silva MB (2005) Faunistic similarity and historic biogeography of the harvestmen of southern and southeastern Atlantic rainforest of Brazil. J Arach 33: 290–299

    Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53: 793–808

    PubMed  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48: 237–257

    PubMed  Google Scholar 

  • Rambaut A (2012) FigTree v1.4. http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Drummond AJ (2013a) LogCombiner v1.8.0. http://beast.bio.ed.ac.uk/

  • Rambaut A, Drummond AJ (2013b) TreeAnnotator v1.8.0. http://beast.bio.ed.ac.uk/

  • Rambaut A, Suchard MA, Xie W, Drummond AJ (2013) Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19: 2092–2100

    CAS  PubMed  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15: 957–966

    CAS  PubMed  Google Scholar 

  • Rogers AR, Fraley AE, Bamshad MJ, Watkins WS, Jorde LB (1996) Mitochondrial mismatch analysis is insensitive to the mutational process. Mol Biol Evol 13: 895–902

    CAS  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552–569

    CAS  PubMed  Google Scholar 

  • Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP (2013) Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 30: 2134–2144

    CAS  PubMed  Google Scholar 

  • Ruiz-García M (1993) Analysis of the evolution and genetic diversity within and between Balearic and Iberian cat populations. J Hered 84: 173–180

    PubMed  Google Scholar 

  • Ruiz-García M (1994) Genetic profiles from coat genes of natural Balearic cat populations: an eastern Mediterranean and North-African origin. Genet Sel Evol 26: 39–64

    PubMed Central  Google Scholar 

  • Ruiz-García M (1997) Genetic relationships among some new cat populations sampled in Europe: a spatial autocorrelation analysis. J Genet 76: 1–24

    Google Scholar 

  • Ruiz-García M (1999) Genetic structure of different cat populations in Europe and South America at a microgeographic level: importance of the choice of an adequate sampling level in the accuracy of population genetics interpretations. Genet Mol Biol 22: 493–505

    Google Scholar 

  • Ruiz-García M (2005) The use of several microsatellite loci applied to 13 Neotropical primates revealed a strong recent bottleneck event in the woolly monkey (Lagothrix lagotricha) in Colombia. Primate Report 71: 27–55

    Google Scholar 

  • Ruiz-García M, Alvarez D (2000) Genetic microstructure in two Spanish cat populations I: genic diversity, gene flow and selection. Genes Genet Syst 75: 269–280

    PubMed  Google Scholar 

  • Ruiz-García M, Chacón D, Plese T, Schuler I, Shostell JM (2018) Mitogenomics phylogenetic relationships of the current sloth’s genera and species (Bradypodidae and Megalonychidae). Mitochondrial DNA Part A 29: 281–299

    Google Scholar 

  • Ruiz-García M, Klein KK (1997) Genetic structure of domestic cat populations (Felis catus) at micro and macrogeographical levels: two examples (Catalonia, Spain, and mid-western USA). J Genet 76: 99–114

    Google Scholar 

  • Santos TMS (1977) Osteologia craniana de Bradypus Linnaeus, 1758 e reavaliacao do genero Scaeopus Peters, 1865. Master Thesis. Universidade Federal do Rio Grande do Sul, 178 pp

  • Sambrock J, Fritsch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edition. V1. Cold Spring Harbor laboratory Press, New York

    Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Statistics 6: 461–464

    Google Scholar 

  • Silva SM (2013) Contribuições para a conservação de Bradypus variegatus (preguiça comum): processos históricos e demográficos moldando a diversidade nuclear. Ph.D. dissertation, Universidade de São Paulo, São Paulo

  • Simonsen K, Churchill G, Aquadro C (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extension of the Mantel test of matrix corresponde. Syst Zool 35: 627–632

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–1243

    CAS  PubMed  Google Scholar 

  • Steiner CC, Houck ML, Ryder OA (2011) Species identification and chromosome variation of captive two-toed sloths. Zoo Biol 29: 1–13

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol Biol Evol 30: 2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thalmann O, Hebler J, Poinar HN, Paabo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other apes. Mol Ecol 13: 321–335

    CAS  PubMed  Google Scholar 

  • Thomas O (1917) Some notes on three-toed sloths. Ann Mag Nat Hist Series 8 19: 352–357

    Google Scholar 

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180

    PubMed  Google Scholar 

  • Vanzolini PE (1988) Distributional patterns of South American lizards. In: Vanzolini PE, Hayer WR (eds) Proceedings of a Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 317–343

    Google Scholar 

  • Van Roosmalen MGM, Frenz L, Van Hooft P, De Iongh HH (2007) A new species of living peccary (Mammalia: Tayassuidae) from the Brazilian Amazon. Bonn zool Beitr 55: 105–112

    Google Scholar 

  • Vizcaíno SF (1994) Sistemática y Anatomía de los Astegotheriini Ameghino, 1906 (nuevo rango) (Dasypodidae, Dasypodinae). Ameghiniana 31: 3–13

    Google Scholar 

  • Vizcaíno SF, Reguero MA, Goin FJ, Pascual R (1998) Antarctica as background for mammalian evolution. Paleógeno de América del Sur y de la Península Antártica, Asociación Paleontológica Argentina, Publicación especial 30: 201–211

    Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48: 1–5

    CAS  PubMed  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513

    CAS  PubMed  Google Scholar 

  • Watson DF (1992) Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, New York

    Google Scholar 

  • Wetzel RM (1982) Systematics, distribution, ecology, and conservation of south American edentates. In: Mares MA, Genoways HH (eds) Mammalian Biology in South America. Pymantuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh, pp 345–375

    Google Scholar 

  • Wetzel RM (1985) The identification and distribution of recent Xenarthra (=Edentata). In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 5–21

    Google Scholar 

  • Wetzel RM, Avila-Pires FD (1980) Identification and distribution of the recent sloths of Brazil (Edentata). Brazil J Biol 40: 831–836

    Google Scholar 

  • Zachos FE (2016) Tree thinking and species delimitation: guidelines for taxonomy and phylogenetic terminology. Mammal Biol 81: 185–188

    Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Diana Alvarez, Pablo Escobar-Armel, Nicolás Lichilín, Luisa Castellanos-Mora, Kelly Luengas, and Alan Velarde for their respective help in obtaining sloth samples over the last 20 years. Thanks to Instituto von Humboldt (Villa de Leyva in Colombia; Janeth Muñoz and Andrés Cuervo), to the Peruvian Ministry of Environment, PRODUCE (Dirección Nacional de Extracción y Procesamiento Pesquero), Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales from Peru, to the Colección Boliviana de Fauna (Dr. Julieta Vargas) and to CITES Bolivia, to the National Environmental authority from Panama, and the Brazilian IBAMA for their role in facilitating the obtainment of collection permits in Colombia, Peru, Bolivia, Panama and Brazil. We also thank the many people of diverse Indian tribes in Peru (Bora, Shipigo-Comibo, Kishuarana and Alamas), Bolivia (Sirionó, Canichana and Chacobo), and Colombia (Tucano, Nonuya, Yuri and Yucuna), and many people in Panama and Brazil for their support in obtaining samples of Bradypus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz-García.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, M., Chacón, D., Plese, T. et al. Molecular Phylogenetics of Bradypus (Three-Toed Sloth, Pilosa: Bradypodidae, Mammalia) and Phylogeography of Bradypus variegatus (Brown-Throated Three-Toed Sloth) with Mitochondrial Gene Sequences. J Mammal Evol 27, 461–482 (2020). https://doi.org/10.1007/s10914-019-09465-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09465-w

Keywords

Navigation