Skip to main content
Log in

Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Bats are atypical small mammals. Size is crucial for bats because it affects most aerodynamic variables and several key echolocation parameters. In turn, scaling relationships of both flight and echolocation have been suggested to constrain bat body size evolution. Previous studies have found a large phylogenetic effect and the inclusion of early Eocene fossil bats contributed to recover idiosyncratic body size change patterns in bats. Here, we test these previous hypotheses of bat body size evolution using a large, comprehensive supermatrix phylogeny (+800 taxa) to optimize body size and examine changes reconstructed along branches. Our analysis provides evidence of rapid stem phyletic nanism, an ancestral value stabilized at 12 g for crown-clade Chiroptera followed by backbone stasis, low-magnitude changes inside established families, and massive body size increase at accelerated rate in pteropodid subclades. Total variation amount explained by pteropodid subclades was 86.3%, with most changes reconstructed as phyletic increases but also apomorphic decreases. We evaluate these macroevolutionary patterns in light of the constraints hypothesis, and in terms of both neutral and adaptive evolutionary models. The reconstructed macroevolution of bat body size led us to propose that echolocation and flight work as successive, nested constraints limiting bat evolution along the body size scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida FC, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: A phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Molecular Phylogenetics and Evolution 77:83-95

    PubMed  Google Scholar 

  • Aguirre LF (2007) Historia Natural, Distribución y Conservación de los Murciélagos de Bolivia. Centro de Ecología y Difusión Simón I. Patiño. Santa Cruz, Bolivia

  • Amador LI, Giannini NP (2018) Phylogeny and evolution of body mass in didelphid marsupials (Marsupialia: Didelphimorphia: Didelphidae). Org Divers Evol 16(3): 641–657

    Google Scholar 

  • Amador LI, Moyers Arévalo RL, Almeida FC, Catalano SA, Giannini NP (2018) Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J Mammal Evol 25(1): 37–70

    Google Scholar 

  • Baker J, Meade A, Pagel M, Venditti C (2015) Adaptive evolution toward larger size in mammals. Proc Natl Acad Sci USA 112(16): 5093–5098

    CAS  PubMed  Google Scholar 

  • Barclay RM, Brigham RM (1991) Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? Am Nat 137(5): 693–703

    Google Scholar 

  • Barclay RM, Brigham RM (1994) Constraints on optimal foraging: a field test of prey discrimination by echolocating insectivorous hats. Anim Behav 48(5): 1013–1021

    Google Scholar 

  • Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66(8): 2369–2383

    PubMed  Google Scholar 

  • Biewener AA (2011) Muscle function in avian flight: achieving power and control. Philos Trans R Soc B: 366(1570): 1496–1506

    Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMB, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446(7135): 507–512

    CAS  PubMed  Google Scholar 

  • Bokma F, Godinot M, Maridet O, Ladevèze S, Costeur L, Solé F, Gheerbrant E, Peigné S, Jacques F, Laurin M (2016) Testing for Depéret’s Rule (body size increase) in mammals using combined extinct and extant data. Syst Biol 65: 98–108

    PubMed  Google Scholar 

  • Bonaccorso FJ (1998) Bats of Papua New Guinea. Conservation International, Washington, D.C.

    Google Scholar 

  • Bullen RD, McKenzie NL (2002) Scaling bat wingbeat frequency and amplitude. J Exp Biol 205(17): 2615–2626

    CAS  PubMed  Google Scholar 

  • Calder WA (1996) Size, Function, and Life History. Dover Publications, New York

    Google Scholar 

  • Carter RT, Adams RA (2015) Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation. J Anat 226(4): 301–308

    PubMed  PubMed Central  Google Scholar 

  • Cooper N, Purvis A (2010) Body size evolution in mammals: complexity in tempo and mode. Am Nat 175(6): 727–738

    PubMed  Google Scholar 

  • Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP (2016) A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc 118: 64–77

    Google Scholar 

  • Churchill S (1998) Australian Bats. Reed New Holland, Sydney

    Google Scholar 

  • Dammhahn M, Goodman SM (2014) Trophic niche differentiation and microhabitat utilization revealed by stable isotope analyses in a dry-forest bat assemblage at Ankarana, northern Madagascar. J Trop Ecol 30: 97–109

    Google Scholar 

  • Decher J, Fahr J (2007) A conservation assessment of bats (Chiroptera) of Draw River, Boi-Tano, and Krokosua Hills forest reserves in the western region of Ghana. Myotis 43: 5–30

    Google Scholar 

  • dos Reis NR, Peracchi AL, Pedro WA, de Lima IP (eds) (2007) Morcegos do Brasil. Londrina

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22(9): 1869–1886

    CAS  PubMed  Google Scholar 

  • Eiting TP, Gunnell GF (2009) Global completeness of the bat fossil record. J Mammal Evol 16(3): 151–173

    Google Scholar 

  • Fenton B, Ratcliffe J (2004) Animal behavior: eavesdropping on bats. Nature 429(6992): 612–613

    CAS  PubMed  Google Scholar 

  • Fenton MB (1990) The foraging behaviour and ecology of animal-eating bats. Canadian J Zool 68(3): 411–422

    Google Scholar 

  • Gannon MR, Kurta A, Rodríguez-Durán A, Willig MR (2005) Bats of Puerto Rico: An Island Focus and a Caribbean Perspective. Texas Tech University Press, Lubbock

    Google Scholar 

  • Garbutt N (2007) Mammals of Madagascar: A Complete Guide. Yale University Press, New Haven and London

    Google Scholar 

  • Giannini NP (2003) Canonical phylogenetic ordination. Syst Biol 52(5): 684–695

    Google Scholar 

  • Giannini NP, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules, and Morphology. Cambridge University Press, Cambridge, pp 530–555

    Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5): 774–786

    Google Scholar 

  • Goloboff PA, Mattoni CI, Quinteros AS (2006) Continuous characters analyzed as such. Cladistics 22: 589–601

    Google Scholar 

  • Goodman SM, Cardiff SG, Ranivo J, Russell AL, Yoder AD (2006) A new species of Emballonura (Chiroptera: Emballonuridae) from the dry regions of Madagascar. Am Mus Novitates: 1–24

    Google Scholar 

  • Gould GC, MacFadden BJ (2004) Gigantism, dwarfism, and Cope’s rule: nothing in evolution makes sense without a phylogeny. Bull Am Mus Nat Hist 285: 219–237

    Google Scholar 

  • Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mammal Evol 12: 209–246

    Google Scholar 

  • Harvey MJ, Altenbach JS, Best TL (2011) Bats of the United States and Canada. The Hopkins University Press, Baltimore

    Google Scholar 

  • Hasan NH, Khan FAA, Senawi J, Ketol B, Sait I, Abdullah MT (2012) A report on bats survey at Air Panas-GuaMusang, Kelantan, Malaysia. J Trop Biol Conserv 9(2): 156-162

  • Heller KG (1995) Echolocation and body size in insectivorous bats: the case of the giant naked bat Cheiromeles torquatus (Molossidae). Le Rhinolophe 11: 27–38

    Google Scholar 

  • Huang JCC, Jazdzyk EL, Nusalawo M, Maryanto I, Wiantoro S, Kingston T (2014) A recent bat survey reveals Bukit Barisan Selatan Landscape as a chiropteran diversity hotspot in Sumatra. Acta Chiropt 16(2): 413–449

    Google Scholar 

  • Hutcheon JM, Garland T (2004) Are megabats big? J Mammal Evol 11(3): 257–277

    Google Scholar 

  • Isaac NJ, Jones KE, Gittleman JL, Purvis A (2005) Correlates of species richness in mammals: body size, life history, and ecology. Am Nat 165(5): 600–607

    PubMed  Google Scholar 

  • Jones G (1996) Does echolocation constrain the evolution of body size in bats?. Symp Zool Soc Lond 69: 111–128

    Google Scholar 

  • Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202(23): 3359–3367

    CAS  PubMed  Google Scholar 

  • Kalko EK, Schnitzler HU (1998) How echolocating bats approach and acquire food. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press. Washington, D.C., pp 197–204

    Google Scholar 

  • Kawai K, Mikhail P, Kondo N, Maksim A, Victor N, Ohtanishi N, Dewa H (2014) Bats from Kunashir and Iturup Island. Bull Hokkaido Univ Mus 4: 74–81

  • Kruskop SV (2013) New record of poorly known bat Myotis phanluongi (Mammalia, Chiroptera) from southern Vietnam. Russian J Theriol 12: 79–81

    Google Scholar 

  • Kunz TH, Pierson ED (1994) Bats of the world: an introduction. In: Novak RM, Walker’s Bats of the World. Johns Hopkins University Press, Baltimore, pp 1–46

    Google Scholar 

  • Lim BK, Engstrom MD, Reid FA, Simmons NB, Voss RS, Fleck DW (2010) A new species of Peropteryx (Chiroptera: Emballonuridae) from western Amazonia with comments on phylogenetic relationships within the genus. Am Mus Novitates 3686: 1–20

    Google Scholar 

  • Lu D, Zhou CQ, Liao WB (2014) Sexual size dimorphism lacking in small mammals. North-Western J Zool 10(1): 53–59

    CAS  Google Scholar 

  • Magalhaēs JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22: 1770–1774

    PubMed  Google Scholar 

  • McNab BK (2007) The evolution of energetics in birds and mammals. In: Kelt ED, Lessa EP, Salazar-Bravo J, Patton JL (eds) The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson, Univ Calif Publ Zool 134: 67–110

  • Mendes P (2011) Prioridades globais para a aconservação e características biológicas associadas ao risco de extinção em morcegos (Chiroptera: Mammalia). Instituto de Ciências Biológicas. Programa de Pós-graduação em Ecología e Evolução. Universidade Federal de Goiás. Goiânia

  • Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055): 521–524

    CAS  PubMed  Google Scholar 

  • Monadjem A, Richards L, Taylor PJ, Stoffberg S (2013) High diversity of pipistrelloid bats (Vespertilionidae: Hypsugo, Neoromicia and Pipistrellus) in a West African rainforest with the description of a new species. Zool J Linn Soc 167: 191–207

    Google Scholar 

  • Norberg UM (1990) Vertebrate Flight. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Norberg UM (1994) Wing design, flight performance, and habitat use in bats. In: Wainwright PC, Reilly SM (eds) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp 205–239

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond 316: 337–419

    Google Scholar 

  • Norberg UML, Norberg RA (2012) Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. J Exp Biol 215(5): 711–722

    PubMed  Google Scholar 

  • Novacek MJ (1987) Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis). Am Mus Novitates 2877: 1–18

    Google Scholar 

  • O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339(6120): 662–667

    CAS  PubMed  Google Scholar 

  • Pacheco V, Cadenillas R, Velazco S, Salas E, Fajardo U (2007) Noteworthy bat records from the Pacific Tropical rainforest region and adjacent dry forest in northwestern Peru. Acta Chiropt 9(2): 409–422

    Google Scholar 

  • Parsons S, Riskin DK, Hermanson JW (2010) Echolocation call production during aerial and terrestrial locomotion by New Zealand's enigmatic lesser short-tailed bat, Mystacina tuberculata. J Exp Biol 213(4): 551–557

    PubMed  Google Scholar 

  • Patterson BD, Webala PW (2012) Keys to the Bats (Mammalia: Chiroptera) of East Africa. Fieldiana Life and Earth Sci 6: 1–60

    Google Scholar 

  • Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR (eds) Avian Biology. Academic Press, London, New York, San Francisco, pp 1–75

    Google Scholar 

  • Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhya 26: 329–358

    Google Scholar 

  • Rayner JMV (1986) Vertebrate flapping flight mechanisms and aerodynamics, and the evolution of flight in bats. In: Natctigall W (ed) Biona Report no. 5: Bat flight. Fledermausflug, pp 27–74

  • Rinderknecht A, Blanco RE (2008) The largest fossil rodent. Proc R Soc Lond [Biol] 275(1637): 923–928

    Google Scholar 

  • Safi K, Meiri S, Jones KE (2013) Evolution of body size in bats. In: Smith FA, Lyons SK (eds) Animal Body Size: Linking Pattern and Process across Space, Time, and Taxonomic Group. University of Chicago Press, Chicago and London, pp 95–115

  • Safi K, Seid MA, Dechmann DK (2005) Bigger is not always better: when brains get smaller. Biol Lett 1(3): 283–286

    PubMed  PubMed Central  Google Scholar 

  • Sánchez-Villagra MR, Aguilera O, Horovitz I (2003) The anatomy of the world's largest extinct rodent. Science 301(5640): 1708–1710

    PubMed  Google Scholar 

  • Schober W, Grimmberger E (1997) The Bats of Europe and North America; Knowing Them, Identifying Them, Protecting Them. TFH Publications, Neptune City

    Google Scholar 

  • Sedlock JL, Jose RP, Vog JM, Paguntalan LMJ, Cariño AB (2014) A survey of bats in a karst landscapte in the central Philippines. Acta Chiropt 16(1): 197–211

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammals Species of the World: A Taxonomic and Geographic Reference, 3rd edn. John Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451(7180): 818–821

    CAS  PubMed  Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2010) Inferring echolocation in ancient bats. Nature 466(7309): 939–942

    Google Scholar 

  • Smith FA, Lyons SK, Ernest SM, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of Late Quaternary mammals: ecological archives. Ecology 84(12): 3403

    Google Scholar 

  • Smith T, Habersetzer J, Simmons NB, Gunnell GF (2012) Systematics and paleobiogeography of early bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats. Cambridge University Press, Cambridge, pp 23–66

    Google Scholar 

  • Smith FA, Lyons SK, Jones KE, Maurer BA, Brown JH (2013) The influence of flight on patterns of body size diversity and heritability. In: Smith FA, Lyons SK (eds) Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago University Press, Chicago and London, pp 187–205

    Google Scholar 

  • Speakman JR, Racey PA (1991) No cost of echolocation for bats in flight. Nature 350(6317): 421

    CAS  PubMed  Google Scholar 

  • Teeling EC, Dool S, Springer MS (2012) Phylogenies, fossils and functional genes: the evolution of echolocation in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats. Cambridge University Press, Cambridge, pp 1–22

    Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709): 580–584

    CAS  PubMed  Google Scholar 

  • Ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CFJ, van Tongeren OFR (eds) Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, pp 91–173

    Google Scholar 

  • Ter Braak CFJ, Smilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for Windows: software for canonical community ordination, version 4.0. Microcomputer Power, Ithaca

  • Thiagavel J, Cechetto C, Santana SE, Jakobsen L, Warrant EJ, Ratcliffe JM (2018) Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat Commun 9(1): 98

    PubMed  PubMed Central  Google Scholar 

  • Thong VD, Puechmaille SJ, Denzinger A, Bates PJ, Dietz C, Csorba G, Bates PJJ, Teeling EC, Schnitzler HU (2012) Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam. Mammal Rev 42(2): 166–192

    Google Scholar 

  • Threlfall C, Law B, Penman T, Banks PB (2011) Ecological processes in urban landscapes: mechanisms influencing the distribution and activity of insectivorous bats. Ecography 34(5): 814–826

    Google Scholar 

  • Uyeda JC, Harmon L (2014) bayou: Bayesian Fitting of Ornstein-Uhlenbeck Models to Phylogenies. R package version 1.0.1.

  • Uyeda, J. C., J. Eastman, and L. Harmon (2014) "bayou: Bayesian fitting of Ornstein-Uhlenbeck models to phylogenies." R package version 1.1.

  • Van Den Bussche RA, Hoofer SR (2004) Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J Mammal 85(2): 321–330

    Google Scholar 

  • Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature 479(7373): 393–396

    CAS  Google Scholar 

  • Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature 463(7283): 939–942

    CAS  PubMed  Google Scholar 

  • Wang Z, Zhu T, Xue H, Fang N, Zhang J, Zhang L, Pang J, Teeling EC, Zhang S (2017) Prenatal development supports a single origin of laryngeal echolocation in bats. Nat Ecol Evol 1(0021)

  • Zhang JS, Han NJ, Jones G, Lin LK, Zhang JP, Zhu GJ, Huang DW, Zhang SY (2007) A new species of Barbastella (Chiroptera: Vespertilionidae) from north China. J Mammal 88(6): 1393–1403

    Google Scholar 

Download references

Acknowledgements

We thank Santiago Catalano for his help with handling TNT in the body mass optimization analyses. We thank the support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, PICT 2015-2389 and PICT 2016-3682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto P. Giannini.

Electronic supplementary material

ESM 1

(PDF 165 kb)

ESM 2

(PDF 2065 kb)

ESM 3

(PDF 2130 kb)

ESM 4

(XLSX 78 kb)

ESM 5

(XLSX 55 kb)

ESM 6

(PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyers Arévalo, R.L., Amador, L.I., Almeida, F.C. et al. Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny. J Mammal Evol 27, 123–138 (2020). https://doi.org/10.1007/s10914-018-9447-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-018-9447-8

Keywords

Navigation