Digital Cranial Endocasts of the Extinct Sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina: Description and Comparison with the Extant Sloths

Abstract

The internal cranial morphology of the terrestrial sloth Glossotherium robustum is described here based on a neurocranium from the late Pleistocene of the Pampean region of Buenos Aires, northeastern Argentina. The first published data on the morphology of the brain cavity of this species date back to the latest nineteenth century. The novel techniques of CT scanning and digital reconstructions enable non-destructive access to the internal cranial features of both extinct and extant vertebrates, and thus improve our knowledge of anatomical features that had previously remained obscure. Therefore, we performed CT scans on the posterior half of a skull of G. robustum and created digital models of the endocasts and internal structures. The results reveal the morphology of the brain cavity itself, as well as the paranasal sinuses and the trajectory of several cranial nerves and blood vessels. These features have been compared with the two extant folivoran genera, the two-toed sloth Choloepus and the three-toed sloth Bradypus. For many characteristics, especially those related to the paranasal pneumaticity and the brain cavity, a closer similarity between Glossotherium and Choloepus is observed, in accordance with the most widely accepted phylogenetic scenarios. However, other features are only shared by the two extant genera, but are probably related to allometric effects and the convergence that affected the two modern lineages. This study, which represents the first exhaustive analysis of digital endocasts of a fossil sloth, reveals the importance of the application of new methodologies, such as CT scans, for elucidating the evolutionary history of this peculiar mammalian clade.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ameghino F (1889) Contribución al conocimiento de los mamíferos fósiles de la República Argentina. Actas Acad Nac Ciencias Córdoba 6:1–1027

    Google Scholar 

  2. Anthony J (1953) Morphologie externe du télencéphale dans le genre Bradypus L. (Edentata). Mammalia 17(3):1–149

    Google Scholar 

  3. Antoine PO, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Salas Gismondi R (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B-Biol Sci 279:1319–1326

    Google Scholar 

  4. Antoine PO, Salas-Gismondi R, Pujos F, Ganerød M, Marivaux L (2017) Western Amazonia as a hotspot of mammalian biodiversity throughout the Cenozoic. J Mammal Evol 24(1): 5–17

    Google Scholar 

  5. Bargo MS, De Iuliis G, Vizcaíno SF (2006a) Hypsodonty in Pleistocene ground sloths. Acta Palaeontol Pol 51(1):53–61

    Google Scholar 

  6. Bargo MS, Toledo N, Vizcaíno SF (2006b) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263

    PubMed  Google Scholar 

  7. Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45(1):175–196

    Google Scholar 

  8. Bargo MS, Vizcaíno SF, Archuby FM, Blanco RE (2000) Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene-Early Holocene) mylodontid ground sloths (Mammalia: Xenarthra). J Vertebr Paleontol 20(3):601–610

    Google Scholar 

  9. Barone R, Bortolami R (2004) Anatomie comparée des mammifères domestiques. Tome 6, Neurologie I, Système Nerveux Central. Vigot Frères, Paris

  10. Bergqvist LP, Abrantes EAL, Avilla LDS (2004) The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26(2):323–337

    Google Scholar 

  11. Bertrand OC, Amador-Mughal F, Silcox MT (2017) Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J Anat 230(1):128–151

    PubMed  Google Scholar 

  12. Billet G, Hautier L, de Thoisy B, Delsuc F (2017) The hidden anatomy of paranasal sinuses reveals biogeographically distinct morphotypes in the nine-banded armadillos (Dasypus novemcinctus). PeerJ Preprints 5:e2923v1 https://doi.org/10.7287/peerj.preprints.2923v1

    Article  Google Scholar 

  13. Blanco RE, Rinderknecht A (2008) Estimation of hearing capabilities of Pleistocene ground sloths (Mammalia, Xenarthra) from middle-ear anatomy. J Vertebr Paleontol 28(1):274–276

    Google Scholar 

  14. Blanco RE, Rinderknecht A (2012) Fossil evidence of frequency range of hearing independent of body size in South American Pleistocene ground sloths (Mammalia, Xenarthra). C R Palevol 11(8):549–554

    Google Scholar 

  15. Blaney SPA (1990) Why paranasal sinuses? J Laryngol Otol 104:690–693

    CAS  PubMed  Google Scholar 

  16. Blanton PL, Biggs NL (1969) Eighteen hundred years of controversy: the paranasal sinuses. Am J Anat 124:135–148

    CAS  PubMed  Google Scholar 

  17. Bocquentin J (1979) Mammifères fossiles du Pléistocène supérieur de Muaco, État de Falcón, Venezuela. Dissertation, Université Pierre et Marie Curie

  18. Boscaini A, Iurino DA, Billet G, Hautier L, Sardella R, Tirao G, Gaudin TJ, Pujos F (2018) Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the late Pleistocene of Argentina. Sci Nat https://doi.org/10.1007/s00114-018-1548-y

  19. Bugge J (1979) Cephalic arterial pattern in New World edentates and Old World pangolins with special reference to their phylogenetic relationships and taxonomy. Acta Anat 105:37–46

    CAS  PubMed  Google Scholar 

  20. Christiansen P, Fariña RA (2003) Mass estimation of two fossil ground sloths (Mammalia, Xenarthra, Mylodontidae). Senckenb Biol 83(1):95–101

    Google Scholar 

  21. Clemente CD (1985) Gray’s Anatomy. Lea and Febiger, Philadelphia

    Google Scholar 

  22. Constantinescu GM, Schaller O (2012) Illustrated Veterinary Anatomical Nomenclature. Enke Verlag, Stuttgart

    Google Scholar 

  23. Cope ED (1889) The Edentata of North America. Am Nat 23(272):657–664

    Google Scholar 

  24. Cunningham JA, Rahman IA, Lautenschlager S, Rayfield EJ, Donoghue PC (2014) A virtual world of paleontology. Trends Ecol Evol 29(6):347–357

    PubMed  Google Scholar 

  25. Czerwonogora A, Fariña RA, Tonni EP (2011) Diet and isotopes of late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada). Neues Jahrb Geol Palaontol Abh 262(3):257–266

    Google Scholar 

  26. Dechaseaux C (1958) Encéphales de xénarthres fossiles. In: Piveteau J (ed) Traité de Paléontologie. Masson and Cie, Paris, pp 637–640

    Google Scholar 

  27. Dechaseaux C (1962a) Encéfalos de Notongulados y de Desdentados Xenarthros Fósiles. Ameghiniana 2(11):193–209

    Google Scholar 

  28. Dechaseaux C (1962b) Singularités de l'encéphale de Lestodon, mammifère édenté géant du Plésitocène d'Amérique du Sud. C R Acad Sci 254:1470–1471

    Google Scholar 

  29. Dechaseaux C (1971) Oreomylodon wegneri, édenté gravigrade du Pléistocène de l’Équateur - Crâne et moulage endocrânien. Ann Paleontol 57(2):243–285

    Google Scholar 

  30. De Iuliis G, Cartelle C, McDonald HG, Pujos F (2017) The mylodontine ground sloth Glossotherium tropicorum from the late Pleistocene of Ecuador and Peru. Pap Palaeontol: https://doi.org/10.1002/spp2.1088

    Google Scholar 

  31. Delsuc F, Catzeflis FM, Stanhope MJ, Douzery EJ (2001) The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proc R Soc B 268(1476):1605–1615

    CAS  PubMed  Google Scholar 

  32. Dozo MT (1987) The endocranial cast of an early Miocene edentate, Hapalops indifferens Ameghino (Mammalia, Edentata, Tardigrada, Megatheriidae). Comparative study with brains of recent sloths. J Hirnforsch 28(4):397–406

    CAS  PubMed  Google Scholar 

  33. Dozo MT (1994) Interpretación del molde endocraneano de Eucholoeops fronto, un Megalonychidae (Mammalia, Xenarthra, Tardigrada) del Mioceno temprano de Patagonia (Argentina). Ameghiniana 31(4):317–329

    Google Scholar 

  34. Dozo MT, Martínez G (2016) First digital cranial endocasts of late Oligocene Notohippidae (Notoungulata): implications for endemic South American ungulates brain evolution. J Mammal Evol 23(1):1–16

    Google Scholar 

  35. Edinger T (1950) Frontal sinus evolution (particularly in the Equidae). Bull Mus Comp Zool Harvard 103:411–496

    Google Scholar 

  36. Elliot-Smith GE (1898) The brain in the Edentata. Trans Linn Soc Lond Ser 2 (Zoology) 7:277–394

    Google Scholar 

  37. Engelmann GF (1985) The phylogeny of the Xenarthra. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths and Vermilinguas. Smithsonian Institution Press, Washington, D.C., pp 51–64

    Google Scholar 

  38. Esteban GI (1996) Revisión de los Mylodontinae cuaternarios (Edentata-Tardigrada) de Argentina, Bolivia y Uruguay. Sistemática, filogenia, paleobiología, paleozoogeografía y paleoecología. Dissertation, Universidad Nacional de Tucumán

  39. Evans HE (1993) Miller’s Anatomy of the Dog, 3rd edition. Saunders, Philadelphia

    Google Scholar 

  40. Fariña RA, Vizcaíno SF (2003) Slow moving or browsers? A note on nomenclature. Senckenb Biol 83(1):3–4

    Google Scholar 

  41. Farke AA (2007) Morphology, constraints, and scaling of frontal sinuses in the hartebeest, Alcelaphus buselaphus (Mammalia: Artiodactyla, Bovidae). J Morphol 268(3):243–253

    PubMed  Google Scholar 

  42. Farke AA (2008) Function and evolution of the cranial sinuses in bovid mammals and ceratopsian dinosaurs. Dissertation, Stony Brook University

    Google Scholar 

  43. Farke AA (2010) Evolution and functional morphology of the frontal sinuses in Bovidae (Mammalia: Artiodactyla), and implications for the evolution of cranial pneumaticity. Zool J Linn Soc 159(4):988–1014

    Google Scholar 

  44. Fernicola JC, Toledo N, Bargo MS, Vizcaíno SF (2012) A neomorphic ossification of the nasal cartilages and the structure of paranasal sinus system of the glyptodont Neosclerocalyptus Paula Couto 1957 (Mammalia, Xenarthra). Palaeontol Electron 15(3):1–22

    Google Scholar 

  45. Fernicola JC, Vizcaíno SF, De Iuliis G (2009) The fossil mammals collected by Charles Darwin in South America during his travels on board the HMS Beagle. Rev Asoc Geol Argent 64(1):147–159

    Google Scholar 

  46. Flower W (1883) On the arrangement of the orders and families of existing Mammalia. Proc Zool Soc Lond 1883:178–186

  47. Gaudin TJ (1995) The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). J Vertebr Paleontol 15(3):672–705

    Google Scholar 

  48. Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140(2):255–305

    Google Scholar 

  49. Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96(4):622–634

    Google Scholar 

  50. Gaudin TJ, De Iuliis G, Toledo N, Pujos F (2015) The basicranium and orbital region of the early Miocene Eucholoeops ingens Ameghino, (Xenarthra, Pilosa, Megalonychidae). Ameghiniana 52(2):226–240

    Google Scholar 

  51. Gelfo JN, Reguero MA, López GM, Carlini AA, Ciancio MR, Chornogubsky L, Bond M, Goin FJ, Tejedor M (2009) Eocene mammals and continental strata from Patagonia and Antarctic Peninsula. In: Albright LB (ed) Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Mus North Ariz Bull 64, Flagstaff, Arizona, pp 567–592

    Google Scholar 

  52. Gervais P (1869) Mémoire sur les formes cérébrales propres aux édentés vivants et fossiles. Nouv Arch du Mus Hist Nat Paris 5:1–56

    Google Scholar 

  53. Gill T (1872) Arrangement of the families of mammals, with analytical tables. Smithson Misc Collect 11:1–98

    Google Scholar 

  54. Goffart M (1971) Function and Form in the Sloth. Pergamon Press, Oxford

    Google Scholar 

  55. Guth C (1961) La région temporale des Edentés. Dissertation, Université de Paris

  56. Hayssen V (2008) Bradypus pygmaeus (Pilosa: Bradypodidae). Mammal Species 812:1–4

    Google Scholar 

  57. Hayssen V (2010) Bradypus variegatus (Pilosa: Bradypodidae). Mammal Species 42(850):19–32

    Google Scholar 

  58. Hoffstetter R (1952) Les mammifères Pléistocènes de La République de l’Equateur. Mem Soc Geol France 66:1–391

    Google Scholar 

  59. Hyrtl J (1854) Beiträge zur vergleichenden Angiologie. V. Das arterielle Gefäss-System der Edentaten. Denksch Akad Wiss Wien Math-Naturwiss Kl 6: 21–64.

    Google Scholar 

  60. Jerison HJ (1991) Fossil Brains and the evolution of the neocortex. In: Finlay BL, Innocenti G, Scheich H (eds) The Neocortex, Ontogeny and Phylogeny. Springer, Boston, pp 5–19

    Google Scholar 

  61. Kielan-Jaworowska Z (1986) Brain evolution in Mesozoic mammals. In: Flanagan KM, Lillegraven JA (eds) Vertebrates, Phylogeny, and Philosophy. Contrib Geol Univ Wyoming Spec Pap 3:21–34

    Google Scholar 

  62. Kraglievich L (1925) Cuatro nuevos Gravigrados de la fauna araucana chapadmalense. Anales Mus Nac Hist Nat Bernardino Rivadavia 33:215–235

    Google Scholar 

  63. Langworthy OR (1935) A physiological study of the cerebral motor cortex and the control of posture in the sloth. J Comp Neurol 62(2):333–348

    Google Scholar 

  64. Macrini TE, Muizon C de, Cifelli RL, Rowe T (2007a) Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. J Vertebr Paleontol 27(1):99–107

    Google Scholar 

  65. Macrini TE, Rougier GW, Rowe T (2007b) Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat Rec 290(7):875–892

    Google Scholar 

  66. MacPhee RDE, Iturralde-Vinent MA (1994) First Tertiary land mammal from Greater Antilles: an early Miocene sloth (Xenarthra, Megalonychidae) from Cuba. Am Mus Novitates 3094:1–13

    Google Scholar 

  67. MacPhee RDE, Iturralde-Vinent MA (1995) Origin of the Greater Antillean land mammal fauna, 1: new Tertiary fossils from Cuba and Puerto Rico. Am Mus Novitates 3141:1–31

    Google Scholar 

  68. McAfee RK (2009) Reassessment of the cranial characters of Glossotherium and Paramylodon (Mammalia: Xenarthra: Mylodontidae). Zool J Linn Soc 155(4):885–903

    Google Scholar 

  69. McDonald HG, De Iuliis G (2008) Fossil history of sloths. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 39–55

    Google Scholar 

  70. McDonald HG, Rincón AD, Gaudin TJ (2013) A new genus of megalonychid sloth (Mammalia, Xenarthra) from the late Pleistocene (Lujanian) of Sierra De Perija, Zulia State, Venezuela. J Vertebr Paleontol 33(5):1226–1238

    Google Scholar 

  71. McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York

    Google Scholar 

  72. Mones A (1986) Palaeovertebrata Sudamericana. Catálogo sistemático de los vertebrados fósiles de América del Sur. Parte I. Lista preliminar y bibliografía. Cour Forsch Inst Senckenberg 82:1–625

    Google Scholar 

  73. Moore WJ (1981) The Mammalian Skull. Cambridge University Press, Cambridge

    Google Scholar 

  74. Naples VL (1982) Cranial osteology and function in the tree sloths, Bradypus and Choloepus. Am Mus Novitates 2739:1–41

    Google Scholar 

  75. Novacek MJ (1993) Patterns of diversity in the mammalian skull. In: Hanken J, Hall BK (eds) The Skull, Volume 2, Patterns of Structural and Systematic Diversity. University of Chicago Press, Chicago, pp 438–545

    Google Scholar 

  76. Owen R (1839) Fossil Mammalia. In: Darwin C (ed) The Zoology of the Voyage of the Beagle. Smith, Elder and Co., London, pp 13–111

    Google Scholar 

  77. Owen R (1842) Description of the skeleton of an extinct gigantic sloth, Mylodon robustus, Owen, with observations on the osteology, natural affinities, and probable habits of the megatheroid quadrupeds in general. Direction of the Council, London

  78. Pascual R (2006) Evolution and geography: the biogeographic history of South American land mammals. Ann Mo Bot Gard 93:209–230

    Google Scholar 

  79. Patterson B, Turnbull WD, Segall W, Gaudin TJ (1992) The ear region in xenarthrans (= Edentata: Mammalia). Part II. Pilosa (sloths, anteaters), palaeanodonts, and a miscellany. Fieldiana Geol 24:1–78

    Google Scholar 

  80. Pérez LM, Toledo N, De Iuliis G, Bargo MS, Vizcaíno SF (2010) Morphology and function of the hyoid apparatus of fossil xenarthrans (Mammalia). J Morphol 271:1119–1133

    PubMed  Google Scholar 

  81. Pitana VG, Esteban GI, Ribeiro AM, Cartelle C (2013) Cranial and dental studies of Glossotherium robustum (Owen, 1842) (Xenarthra: Pilosa: Mylodontidae) from the Pleistocene of southern Brazil. Alcheringa 37(2):147–162

    Google Scholar 

  82. Prothero JW, Sundsten JW (1984) Folding of the cerebral cortex in mammals. Brain Behav Evol 24(2-3):152–167

    CAS  PubMed  Google Scholar 

  83. Pujos F, De Iuliis G, Cartelle C (2017) A paleogeographic overview of tropical fossil sloths: towards an understanding of the origin of extant suspensory sloths? J Mammal Evol 24(1):1–20

    Google Scholar 

  84. Pujos F, Gaudin TJ, De Iuliis G, Cartelle C (2012) Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. J Mammal Evol 19(3):159–169

    Google Scholar 

  85. Reguero MA, Gelfo JN, López GM, Bond M, Abello A, Santillana SN, Marenssi SA (2014) Final Gondwana breakup: the Paleogene South American native ungulates and the demise of the South America–Antarctica land connection. Glob Planet Change 123:400–413

    Google Scholar 

  86. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9(5):250–257

    PubMed  Google Scholar 

  87. Sakai ST, Arsznov BM, Lundrigan BL, Holekamp KE (2011) Brain size and social complexity: a computed tomography study in Hyaenidae. Brain Behav Evol 77(2):91–104

    PubMed  Google Scholar 

  88. Simpson GG (1980) Splendid Isolation. The Curious History of South American Mammals. Yale University Press, New Haven

    Google Scholar 

  89. Simpson GG, Paula Couto C de (1981) Fossil mammals from the Cenozoic of Acre, Brazil. III - Pleistocene Edentata Pilosa, Proboscidea, Sirenia, Perissodactyla and Artiodactyla. Iheringia Ser Geol 6:11–73

  90. Slater GJ, Cui P, Forasiepi AM, Lenz D, Tsangaras K, Voirin B, de Moraes-Barros N, MacPhee RDE, Greenwood AD (2016) Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biol Evol 8(3):607–621

    CAS  PubMed  PubMed Central  Google Scholar 

  91. St-André PA, Pujos F, Cartelle C, De Iuliis G, Gaudin TJ, McDonald HG, Quispe BM (2010) Nouveaux paresseux terrestres (Mammalia, Xenarthra, Mylodontidae) du Néogène de l'Altiplano bolivien. Geodiversitas 32(2):255–306

    Google Scholar 

  92. Storch G, Habersetzer J (1991) Rückverlagerte Choanen und akzessorische Bulla tympanica bei rezenten Vermilingua und Eurotamandua aus dem Eozän von Messel (Mammalia: Xenarthra). Z Säugetierk 56:257–271

    Google Scholar 

  93. Tandler J (1901) Zur vergleichenden Anatomie der Kopfarterien bei den Mammalia. Anat Hefte 18: 328–368.

    Google Scholar 

  94. Thiery G, Ducrocq S (2015) Endocasts and brain evolution in Anthracotheriidae (Artiodactyla, Hippopotamoidea). J Anat 227(3):277–285

    PubMed  PubMed Central  Google Scholar 

  95. Van der Merwe NJ, Bezuidenhout AJ, Seegers CD (1995) The skull and mandible of the African elephant (Loxodonta africana). Onderstepoort J Vet Res 62(4):245–260

    PubMed  Google Scholar 

  96. Varela L, Fariña RA (2016) Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quaternary Res 85(1):66–74

    Google Scholar 

  97. Vinuesa V, Iurino DA, Madurell-Malapeira J, Liu J, Fortuny J, Sardella R, Alba DM (2016) Inferences of social behavior in bone-cracking hyaenids (Carnivora, Hyaenidae) based on digital paleoneurological techniques: implications for human–carnivoran interactions in the Pleistocene. Quaternary Internatl 413:7–14

    Google Scholar 

  98. Vizcaíno SF, Zárate M, Bargo MS, Dondas A (2001) Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders. Acta Palaeontol Pol 46(2):289–301

    Google Scholar 

  99. Weidenreich F (1924) Über die pneumatischen Nebenräume des Kopfes. Ein Beitrag zur Kenntnis des Bauprinzips der Knochen, des Schädels und des Körpers (Knochenstudien: III. Teil). Anat Embryol 72(1):55–93

    Google Scholar 

  100. Weidenreich F (1941) The brain and its role in the phylogenetic transformation of the human skull. Trans Am Phil Soc 31(5):320–442

    Google Scholar 

  101. Wible JR (2010) Petrosal anatomy of the nine-banded armadillo, Dasypus novemcinctus Linnaeus, 1758 (Mammalia, Xenarthra, Dasypodidae). Ann Carnegie Mus 79(1):1–28

    Google Scholar 

  102. Witmer LM (1997) The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. J Vertebr Paleontol 17(S1):1–73

    Google Scholar 

  103. Woodburne MO (2010) The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. J Mammal Evol 17(4):245–264

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the FUESMEN for access to CT-scanning facilities, and in particular we are indebted to Sergio Mosconi and collaborators for assistance with image processing. We thank A. Kramarz, S.M. Alvarez, and L. Chornogubsky (MACN) who kindly gave access to the specimens under their care. This work was possible thanks to the facilities offered by the PaleoFactory Lab (Sapienza Università di Roma, Rome, Italy) and the free digital database available at http://digimorph.org. We also want to thank G. Billet, L. Hautier, M. Fernández-Monescillo, S. Hernández del Pino, and A. Forasiepi for their useful suggestions. This paper greatly benefited from the careful reading and thoughtful comments by the Editor J.R. Wible and two anonymous reviewers. This work was partially funded by ECOS-FonCyT (A14U01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Boscaini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boscaini, A., Iurino, D.A., Sardella, R. et al. Digital Cranial Endocasts of the Extinct Sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina: Description and Comparison with the Extant Sloths. J Mammal Evol 27, 55–71 (2020). https://doi.org/10.1007/s10914-018-9441-1

Download citation

Keywords

  • Extinct sloth Glossotherium
  • Endocast
  • Brain cavity
  • Cranial nerves
  • Paranasal sinuses
  • Blood vessels