Coalescence Models Reveal the Rise of the White-Bellied Rat (Niviventer confucianus) Following the Loss of Asian Megafauna

  • Deyan Ge
  • Liang Lu
  • Alexei V. Abramov
  • Zhixin Wen
  • Jilong Cheng
  • Lin Xia
  • Alfried P. Vogler
  • Qisen Yang
Original Paper


Rodents are the major remaining mammals in many terrestrial ecosystems after the historical loss of megafauna and large-bodied taxa. Niviventer confucianus is a dominant habitat generalist in natural forests in most of China. It is also recorded as an important vector of diverse zoonotic diseases. Here, three mitochondrial and one nuclear DNA fragments were sequenced from samples covering most of the species range to study intraspecific genetic diversification and demographic history. Molecular voucher specimens of N. confucianus revealed that its assumed distribution range has been overestimated because of the hitherto unrecognized separation from parapatric species. Phylogenetic inferences recognized three geographically delimited intraspecific lineages that diverged at approximately 1.28 and 0.68 Mya. Hengduan Mountains, the east margin of Qinghai Tibetan Plateau, and the mountains surrounding Sichuan Basin were recognized as the major geographical barriers. Demographic analysis revealed dramatic population growth in southwest, central, and northern China in the late Pleistocene, but only slight growth in Yunnan/Tibet. The population boom apparently coincided with the reduction of predation and competition from the loss of megafauna in the late Pleistocene. Distributional ranges were inferred to be fairly stable through the late Quaternary glacial-interglacial climatic oscillations, possibly enabled by the species’ seed hoarding behavior and wide climatic tolerance. The demographic history of N. confucianus suggests that these rodents directly profited from the loss of megafauna, while their most recent increases potentially led to the proliferation of zoonotic disease by this species.


Wild rat Genetic diversity Population expansion Quaternary climate 



We thank Quan Kang in the high-performance computer system of the IOZCAS for providing assistance. We appreciate chief editor, John R. Wible, and two anonymous reviewers for their consctructive comments. Deyan Ge and Alfried P. Vogler are sponsored by the Newton Advanced Fellowship of the Royal Society of the United Kingdom (Ref. NA150142). Our research is also sponsored by Natural Science Foundation of China (No: 31172065), a grant from the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences (Y229YX5105), and the Special Infectious Disease Program (2012ZX10004-219). Alexei V. Abramov is sponsored by International Fellowship for Distinguished Scientists, Chinese Academy of Sciences (Ref. 2017VBA0027).

Author Contributions

D.Y.G., Q.S.Y., L.X. and L.L. conceived of the study; D.Y.G., Z. X.W., J.L.C., L.L., L.X., Q.S.Y. and A. A. collected samples; D.Y.G. and J.L.C. performed the laboratory work; D.Y.G., J.L.C. and V.A. analysed the data; and D.Y.G., L.L., V. A. and A. A. wrote the manuscript. All authors contributed to the interpretation of the results and commented on the final version of this manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

10914_2018_9428_MOESM1_ESM.docx (471 kb)
ESM 1 (DOCX 470 kb)


  1. Aplin KP, Suzuki H, Chinen AA, Chesser RT, Ten Have J, Donnellan SC, Austin J, Frost A, Gonzalez JP, Herbreteau V, Catzeflis F, Soubrier J, Fang YP, Robins J, Matisoo-Smith E, Bastos AD, Maryanto I, Sinaga MH, Denys C, Van Den Bussche RA, Conroy C, Rowe K, Cooper A (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 6:e26357. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Balakirev AE, Abramov AV, Rozhnov VV (2014) Phylogenetic relationships in the Niviventer-Chiromyscus complex (Rodentia, Muridae) inferred from molecular data, with description of a new species. ZooKeys 451:109–136. CrossRefGoogle Scholar
  3. Balakirev AE, Rozhnov VV (2010) Phylogenic relationships and species composition in the genus Niviventer (Rodentia: Muridae) in Vietnam as inferred from mitochondrial cytochrome b gene. Vest Mosk Uni Ser biol 4:46-49.
  4. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. CrossRefPubMedGoogle Scholar
  5. Bartlett LJ, Williams DR, Prescott GW, Balmford A, Green RE, Eriksson A, Valdes PJ, Singarayer JS, Manica A (2016) Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of late quaternary megafauna. Ecography 39:152–161. CrossRefGoogle Scholar
  6. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brodie JF (2009) Is research effort allocated efficiently for conservation? Felidae as a global case study. Biodivers Conserv 18:2927–2939. CrossRefGoogle Scholar
  8. Cai MT, Xu DN, Wei MJ, Wang JP, Pan BL (2015) Vegetation and climate change in the Beijing plain during the last million years and implications for Homo erectus occupation in north China. Palaeogeogr Palaeoclimatol Palaeoecol 432:29–35. CrossRefGoogle Scholar
  9. Cao ZW, Zuo SQ, Gong ZD, Zhan L, Bian CL, Zhang PH, Yang H, Zhang JS, Zhao QM, Jia N, Cao WC (2010) Genetic analysis of a hantavirus strain carried by Niviventer confucianus in Yunnan province, China. Virus Res 153:157–160. CrossRefPubMedGoogle Scholar
  10. Chang G, Zhang ZB (2011) Differences in hoarding behaviors among six sympatric rodent species on seeds of oil tea (Camellia oleifera) in southwest China. Acta Oec 37:165–169. CrossRefGoogle Scholar
  11. Chen W, Li Y, Liu Y, Liu SY, Yue BS (2011) Complex topographic configuration in the Hengduan Mountains shaped the phylogeographic structure of Chinese white-bellied rats. J Zool 284:215–223CrossRefGoogle Scholar
  12. Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw CJ (2015) Abrupt warming events drove late Pleistocene Holarctic megafaunal turnover. Science 349:602–606. CrossRefPubMedGoogle Scholar
  13. Corbet GB, Hill JE (1992) The Mammals of the Indomalayan Region: A Systematic Review. Oxford University Press, OxfordGoogle Scholar
  14. Dickman AJ, Hinks AE, Macdonald EA, Burnham D, Macdonald DW (2015) Priorities for global felid conservation. Conserv Biol 29:854–864. CrossRefPubMedGoogle Scholar
  15. Fan ZX, Liu SY, Liu Y, Liao LH, Zhang XY, Yue BS (2012) Phylogeography of the south China field mouse (Apodemus draco) on the southeastern Tibetan plateau reveals high genetic diversity and glacial refugia. PLoS ONE 7,e38184:38181–38115. Google Scholar
  16. Fan ZX, Liu SY, Liu Y, Zhang XY, Yue BS (2011) How Quaternary geologic and climatic events in the southeastern margin of the Tibetan plateau influence the genetic structure of small mammals: Inferences from phylogeography of two rodents, Neodon irene and Apodemus latronum. Genetica 139:339–351. CrossRefPubMedGoogle Scholar
  17. Fu YH, Gengqiu ZX, Tu FY, Miao N, Fei LS, Zhao C (2015) Composition and diversity of small mammals in China Panda Valley, Dujiangyan, Sichuan Province. Sichuan J Zool 34:570–573.
  18. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  19. Ge DY, Lu L, Cheng JL, Xia L, Chang YB, Wen ZX, Lv X, Du YB, Liu QY, Yang QS (2017) An endemic rat species complex is evidence of moderate environmental changes in the terrestrial biodiversity centre of China through the late Quaternary. Sci Rep 7:46127. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gill JL (2014) Ecological impacts of the late Quaternary megaherbivore extinctions. New Phyt 201:1163–1169. CrossRefGoogle Scholar
  21. Guo YW, Wang D, Shi DZ (2013) Rodent damages and the management of agricultural rodent pests in China. Plant Protec 39:62–69. Google Scholar
  22. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  23. Harper GA, Bunbury N (2015) Invasive rats on tropical islands: their population biology and impacts on native species. Glob Ecol Conserv 3:607-627.
  24. He K, Hu NQ, Chen X, Li JT, Jiang XL (2015) Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China. Heredity 116:23–32. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoffmann M, Duckworth JW, Holmes K, Mallon DP, Rodrigues AS, Stuart SN (2015) The difference conservation makes to extinction risk of the world's ungulates. Conserv Biol 29:1303–1313. CrossRefPubMedGoogle Scholar
  26. Hu HY (1935) The distribution of population in China. Acta Geogr Sin 2:32–74Google Scholar
  27. Huang WP, Ciochon R, Gu YM, Larick R, Qiren H, Schwarcz H, Yonge C, John V, Rink W (1995) Early Homo and associated artefacts from Asia. Nature 378:275–278. CrossRefPubMedGoogle Scholar
  28. Huang Y, Guo X, Ho SY, Shi H, Li J, Li J, Cai B, Wang Y (2013). Diversification and demography of the oriental garden lizard (Calotes versicolor) on Hainan Island and the adjacent mainland. PLoS ONE 8:e64754. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32: 128–144. CrossRefPubMedGoogle Scholar
  30. Jackson P, Nowell K (1996) Problems and possible solutions in management of felid predators. J Wildl Res 1:304–314Google Scholar
  31. Ji L, Wang Z, Wang X, An L (2011) Forest insect pest management and forest management in China: an overview. Environ Manag 48:1107–1121. CrossRefGoogle Scholar
  32. Jing MD, Yu HT, Bi X, Lai YC, Jiang W, Huang L (2014) Phylogeography of Chinese house mice (Mus musculus musculus/castaneus): distribution, routes of colonization and geographic regions of hybridization. Mol Ecol 23:4387–4405. CrossRefPubMedGoogle Scholar
  33. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. PubMedGoogle Scholar
  34. Latinne A, Meynard CN, Herbreteau V, Waengsothorn S, Morand S, Michaux JR (2015) Influence of past and future climate changes on the distribution of three southeast Asian murine rodents. J Biogeogr 42:1714–1726. CrossRefGoogle Scholar
  35. Li HJ, Zhang ZB, Wang YS, Wang FS, Cao XP (2004) Small rodents community composition and seasonal changes of their dominant populations in Dongling Mountain. Acta Theriol Sin 24:215–221Google Scholar
  36. Li LJ, Cao DQ, Liu Y, Chu MW, Liu XF, Xu YG (2013) Community structure of small mammals and surveillance of Yersinia pestis antibody in Mentougou district of Beijing, China. Chin J Vector Biol Control 24:267–269Google Scholar
  37. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. CrossRefPubMedGoogle Scholar
  38. Lin XD, Wang W, Guo WP, Zhang XH, Xing JG, Chen SZ, Li MH, Chen Y, Xu JG, Plyusnin A, Zhang YZ (2012) Cross-species transmission in the speciation of the currently known Murinae-associated hantaviruses. J Virol 86:11171–11182. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lorenzen ED, Nogues-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, Ugan A, Borregaard MK, Gilbert MT, Nielsen R, Ho SY, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli KP, Froese D, Zazula G, Stafford TW, Jr, Aaris-Sorensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai X, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, Sommer R S, Sipko T, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of late Quaternary megafauna to climate and humans. Nature 479:359–364.
  40. Louys J, Curnoe D, Tong HW (2007) Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr Palaeoclimatol Palaeoecol 243:152–173. CrossRefGoogle Scholar
  41. Lu L, Ge DY, Chesters D, Ho SYW, Ma Y, Li GC, Wen ZX, Wu YJ, Wang J, Xia L, Liu JL, Guo TY, Zhang XL, Zhu CD, Yang QS, Liu QY (2015) Molecular phylogeny and the underestimated species diversity of the endemic white-bellied rat (Rodentia: Muridae: Niviventer) in Southeast Asia and China. Zool Scr 44:475–494. CrossRefGoogle Scholar
  42. Lunde D, Smith AT (2016) Niviventer confucianus. The IUCN red list of threatened species 2016: E.T14814A22413788Google Scholar
  43. Ma J, Wu Y, Xia L, Zhang Q, Ma Y, Yang Q S (2010) Elevational diversity of small mammals in Luoji Mt. Nature Reserve, Sichuan Province. Acta Theriol Sin 30:400–410Google Scholar
  44. Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning JC, Terborgh JW (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc Natl Acad Sci U S A 113: 838–846. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Hum Biol 76:173–190CrossRefPubMedGoogle Scholar
  46. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A 90:4087–4091CrossRefPubMedPubMedCentralGoogle Scholar
  47. Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  48. Pages M, Bazin E, Galan M, Chaval Y, Claude J, Herbreteau V, Michaux J, Piry S, Morand S, Cosson JF (2013). Cytonuclear discordance among southeast Asian black rats (Rattus rattus Complex). Mol Ecol 22:1019–1034. CrossRefPubMedGoogle Scholar
  49. Pages M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, Hugot JP, Morand S, Michaux J (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol 10:184. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pages M, Corbet GB, Orth A, Volobouev V, Michaux J, Catzeflis F (2011) Morphological, chromosomal, and genic differences between sympatric Rattus rattus and Rattus satarae in south India. J Mammal 92:659–670. CrossRefGoogle Scholar
  51. Palombo MR, Valli AMF (2005) Highlighting the early-middle Pleistocene transition in Italian and French large-mammal faunas: similarities and faunal renewals. Geol Soc Lond Spec Publ 247:263–276. CrossRefGoogle Scholar
  52. Peng PY, Guo XG (2014) The research status and progresses of Niviventer confucianus. Sichuan J Zool 33:792–800. Google Scholar
  53. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. CrossRefGoogle Scholar
  54. Pires MM, Galetti M, Donatti CI, Pizo MA, Dirzo R, Guimaraes PR (2014) Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175:1247–1256. CrossRefPubMedGoogle Scholar
  55. Pires MM, Koch PL, Farina RA, de Aguiar MA, dos Reis SF, Guimaraes PR (2015) Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc Roy Soc B Biol Sci 282:1814.
  56. Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12-20.
  57. Poux C, Douzery EJ (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124: 1–16. CrossRefPubMedGoogle Scholar
  58. Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571. CrossRefPubMedGoogle Scholar
  59. Rambaut A, Drummond AJ (2007a) Tracer v1.5. Available from
  60. Rambaut A, Drummond AJ (2007b) TreeAnnotator 2.1.2. Available from http://beast.Bio.Ed.Ac.Uk/TreeAnnotator
  61. Roberts P, Delson E, Miracle P, Ditchfield P, Roberts RG, Jacobs Z, Blinkhorn J, Ciochon RL, Fleagle JG, Frost SR, Gilbert CC, Gunnell GF, Harrison T, Korisettar R, Petraglia MD (2014) Continuity of mammalian fauna over the last 200,000 y in the Indian subcontinent. Proc Natl Acad Sci U S A 111:5848–5853. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7:717–729. CrossRefGoogle Scholar
  63. Robins JH, Tintinger V, Aplin KP, Hingston M, Matisoo-Smith E, Penny D, Lavery SD (2014) Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of new Guinean species. PLoS ONE 9:e98002. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rowe KC, Aplin KP, Baverstock PR, Morritz C (2011) Recent and papid speciation with limited morphological disparity in the genus Rattus. Syst Biol 60:188–203. CrossRefPubMedGoogle Scholar
  66. Saito-Ito A, Takada N, Ishiguro F, Fujita H, Yao Y, Ma XH, Chen ER (2008) Detection of Kobe-type Babesia microti associated with Japanese human babesiosis in field rodents in central Taiwan and southeastern mainland China. Parasitology 135:691–699. CrossRefPubMedGoogle Scholar
  67. Suzuki Y, Tomozawa M, Koizumi Y, Tsuchiya K, Suzuki H (2015) Estimating the molecular evolutionary rates of mitochondrial genes referring to Quaternary ice age events with inferred population expansions and dispersals in Japanese Apodemus. BMC Evol Biol 15:187. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  69. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thomas O (1908) The Duke of Bedford's zoological exploration in eastern Asia: Vi. List of mammals from the Shantung Peninsula, N. China. Proc Zool Soc Lond 1908:5–10Google Scholar
  71. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2, Unit 2 3.
  72. Turvey ST, Tong HW, Stuart AJ, Lister AM (2013) Holocene survival of late Pleistocene megafauna in China: a critical review of the evidence. Quaternary Sci rev 76:156-166.
  73. Vander Wal E, Garant D, Festa-Bianchet M, Pelletier F (2013) Evolutionary rescue in vertebrates: evidence, applications and uncertainty. Phil Trans R Soc Lond B Biol Sci 368:20120090. CrossRefGoogle Scholar
  74. Vrba ES (1992) Mammals as a key to evolutionary theory. J Mammal 73:1-28.
  75. Wang HW, Ge S (2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol Ecol 15:4109–4122. CrossRefPubMedGoogle Scholar
  76. Wang H, Yoshimatsu K, Ebihara H, Ogino M, Araki K, Kariwa H, Wang ZX, Luo ZZ, Li DX, Hang CS, Arikawa J (2000) Genetic diversity of hantaviruses isolated in China and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology 278:332–345. CrossRefPubMedGoogle Scholar
  77. Wang S, Xu X, Shrestha N, Zimmermann NE, Tang Z, Wang Z (2017) Response of spatial vegetation distribution in China to climate changes since the last glacial maximum (LGM). PLoS ONE 12:e0175742. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ye JB, Xiao ZL, Li CH, Wang FS, Liao JC, Zhang ZB (2015) Past climate change and recent anthropogenic activities affect genetic structure and population demography of the greater long-tailed hamster in northern China. Integr Zool 10:482–496. CrossRefPubMedGoogle Scholar
  79. Young HS, Dirzo R, Helgen KM, McCauley DJ, Billeter SA, Kosoy MY, Osikowicz LM, Salkeld D J, Young TP, Dittmar K (2014) Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proc Natl Acad Sci U S A 111:7036–7041. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yue H, Fan ZX, Liu SY, Liu Y, Zhang X (2012) A mitogenome of the Chevrier's field mouse (Apodemus chevrieri) and genetic variations inferred from the cytochrome b gene. DNA Cell Biol 31:460–469. CrossRefPubMedGoogle Scholar
  81. Zhang B, He K, Wan T, Chen P, Sun G, Liu S, Nguyen TS, Lin L, Jiang XL (2016) Multi-locus phylogeny using topotype specimens sheds light on the systematics of Niviventer (Rodentia, Muridae) in China. BMC Evol Biol 16:261. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang ZY, Zhao MS (1984) A new subspecies of the sulphur-bellied rat from Jilin - Rattus niviventer naoniuensis. Acta Zool Sin 30:99–102Google Scholar
  83. Zhen ZM, Jiang ZK, Chen GA (2012) Nie chi Dong Wu Xue (Zoology of Glires). Press of Shanghai Transportation, ShanghaiGoogle Scholar
  84. Zheng SH (1993) Quaternary Rodents of Sichuan-Guizhou Area, China. Science Press, BeijingGoogle Scholar
  85. Zheng XG, Arbogast BS, Kenagy GJ (2003) Historical demography and genetic structure of sister species: deermice (Peromyscus) in the north American temperate rain forest. Mol Ecol 12:711–724. CrossRefPubMedGoogle Scholar
  86. Zheng X, Li B, Jiang GQ, Wang Z (2009) The community structure of small mammals in Jiudingshan nature reserve, Sichuan. J Sichuan For Sci Techn 30:69–71, 85Google Scholar
  87. Zimov SA, Chuprynin VI, Oreshko AP, Chapin, FS III, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146:765–794.
  88. Zou B, Li WW, Zhou EF, Yang MF, Wang TL, Chang WY, Yang XG, Hou Y, Zhang XF, Chen J (2015) Changing study on four kinds of rats quantitative proportion in the field mouse community. Agri Techn Equip 18–21Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication April/2018

Authors and Affiliations

  • Deyan Ge
    • 1
  • Liang Lu
    • 2
  • Alexei V. Abramov
    • 3
    • 4
  • Zhixin Wen
    • 1
  • Jilong Cheng
    • 1
  • Lin Xia
    • 1
  • Alfried P. Vogler
    • 5
    • 6
  • Qisen Yang
    • 1
  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijingChina
  3. 3.Zoological InstituteRussian Academy of SciencesSaint PetersburgRussia
  4. 4.Joint Vietnam-Russian Tropical Research and Technological CentreHanoiVietnam
  5. 5.Department of Life SciencesNatural History MuseumLondonUK
  6. 6.Department of Life SciencesImperial College LondonAscotUK

Personalised recommendations