Advertisement

Journal of Mammalian Evolution

, Volume 25, Issue 4, pp 507–523 | Cite as

An Overview of Xenarthran Developmental Studies with a Focus on the Development of the Xenarthrous Vertebrae

  • Lionel HautierEmail author
  • Jillian D. Oliver
  • Stephanie E. Pierce
Original Paper

Abstract

The mammalian clade Xenarthra (armadillos, anteaters, and sloths) has a long history in comparative anatomy. Here, we review past developmental studies on Xenarthra and extend previous observations on the development of one of their most iconic anatomical features, the xenarthrous vertebral articulations. While xenarthrous vertebrae have been known to researchers since the first descriptions of xenarthrans, intermediate vertebral conditions remain unknown in the fossil record, and uncertainty remains regarding the development of the involved articulations. We used developmental and morphological techniques to provide a novel developmental perspective on the evolution of xenarthrous morphology. Our results highlight that within the xenarthrous articulation, the early-developing metapophysis is the major component, and the anapophysis is the supplementary component, which is an arrangement with both functional and historical implications. Our observations do not support the theory of sacralization as the evolutionary origin of xenarthrous articulations.

Keywords

Ontogeny Xenarthra Vertebrae Xenarthry 

Notes

Acknowledgements

We are grateful to Peter Giere and Frieder Mayer (Museum für Naturkunde, Berlin), G. Verdon, M. Herbin, C. Bens, F. Renoult, C. Denys, and J. Cuisin (Museum National d’Histoire Naturelle, Paris), Roberto Portela Miguez and Louise Tomsett (Natural History Museum, London), Georges Lenglet (Institut Royal des Sciences Naturelles de Belgiques, Brussels), and their colleagues for access to comparative material. For access to material and facilities, we thank Richard Truman (LSU School of Veterinary Medicine, Baton Rouge, Louisiana), the Laboratory of Paleontology and the Institut des Sciences de l’Evolution de Montpellier. A. Heaver (University of Cambridge), Nikolai Kardjilov, and all the staff of the Helmholtz Zentrum (Berlin), R. Abel and R. Garwood (Natural History Museum, London), R. Lebrun (Institut des Sciences de l’Evolution de Montpellier), Ross MacPhee, Nicole Edmison, and James Thostenson (American Museum of Natural History, New York), Blake Dickson (Museum of Comparative Zoology, Cambridge), F. Landru, C. Morlier, G. Guillemain, and all the staff from Viscom SARL (St Ouen l’Aumône, France) provided generous help and advice with acquisition of CT scans. We also thank Sérgio Ferreira Cardoso for his help with the bibliography. LH warmly thanks Robert Asher (University of Cambridge, UK) for introducing him to the development of xenarthrans. We thank two anonymous reviewers and John Wible for their valuable comments on the manuscript. Access to the Helmholtz Zentrum Berlin was facilitated by the European Commission under the 7th Framework Programme through the “Research Infrastructures” action of the “Capacities” Programme, Contract No CP-CSA_INFRA-2008-1.1.1, number ZZ6507-NMI3. For support of the project as a whole, we acknowledge a research grant (F/09 364/I) from the Leverhulme Trust, UK. This work has benefited from an “Investissements d’Avenir’ grant managed by Agence Nationale de la Recherche, France (CEBA, ref. ANR-10-LABX-25-01). This research received support from the Synthesys Project http://synthesys3.myspecies.info/ which is financed by the European Community Research Infrastructure Action under the FP7. Some of the experiments were performed using the μ-CT facilities of the Montpellier Rio Imaging (MRI) platform and of the LabEx CeMEB. This publication is a contribution of the Institut des Sciences de l’Evolution de Montpellier (UMR 5554 – UM + CNRS + IRD + EPHE) No. ISEM 2017-181.

Supplementary material

10914_2017_9412_MOESM1_ESM.docx (91 kb)
Table S1 All examined and described specimens. Institutional abbreviations: BMNH, The Natural History Museum, London; IRSN, Institut Royal des Sciences Naturelles, Brussels; MNHN, Muséum National d’Histoire Naturelle, Paris; PMLER, Paul Mellon Laboratory of Equine Reproduction, Newmarket, UK; UCL, University College London, London; UMZC, University Museum of Zoology, Cambridge; UP, University of Pretoria; USNM, United States National Museum of Natural History, Smithsonian Institution, Washington, D.C.; ZMB, Museum für Naturkunde, Berlin. (DOCX 91 kb)

References

  1. Adam PJ (1999) Choloepus didactylus. Mammal Species 621:1–8Google Scholar
  2. Adamoli VC, Cetica PD, Merani MS, Solari AJ (2001) Comparative morphologic placental types in Dasypodidae (Chaetophractus villosus, Cabassous chacoensis, Tolypeutes matacus, and Dasypus hybridus). Biocell 25:17–22PubMedGoogle Scholar
  3. Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. Bioessays 31:853–864.  https://doi.org/10.1002/bies.200900053 CrossRefGoogle Scholar
  4. Asher RJ, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14.  https://doi.org/10.1186/1741-7007-6-14 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asher RJ, Lin KH, Kardjilov N, Hautier L (2011) Variability and constraint in the mammalian vertebral column. J Evol Biol.  https://doi.org/10.1111/j.1420-9101.2011.02240.x CrossRefGoogle Scholar
  6. Bagatto B, Crossley D, Burggren WW (2000) Physiological variability in neonatal armadillo quadruplets: within- and between-litter differences. J Exp Biol 203:1733–1740PubMedGoogle Scholar
  7. Ballowitz E (1892) Das Schmelzorgan der Edentaten, seine Ausbildung im Embryo und die Persistenz seines Keimrandes bei dem erwachsenen Thier. Arch mikrosk Anat 40:133–156CrossRefGoogle Scholar
  8. Baverstock H, Jeffery N, Cobb SN (2013) The morphology of the mouse masticatory musculature. J Anat 223:46–60CrossRefGoogle Scholar
  9. Becher H (1921) Zur Kenntnis der Placenta yon Bradypus tridactylus. Z Anat Entwicklungsgesch 61:114–136CrossRefGoogle Scholar
  10. Becher H (1931) Placenta und uterusschleimhaut von Tamandua tetradactyla (Myrmecophaga). Gegenbaurs Morphol Jahrb 67:381–458Google Scholar
  11. Benirschke K (2008) Reproductive parameters and placentation in anteaters and sloths. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 160–171Google Scholar
  12. Benirschke K, Kaufmann P, Baergen R (2006) Pathology of the Human Placenta. Springer, New YorkGoogle Scholar
  13. Billet G, Hautier L, Muizon C de, Valentin X (2011) Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution. Proc R Soc B Biol Sci 278:2791–2797.  https://doi.org/10.1098/rspb.2010.2443 CrossRefGoogle Scholar
  14. Böker H (1932) Beobachtungen und Untersuchungen an Säugetieren (einschließlich südamerikanischer Edentaten) während einer biologisch-anatomischen Forschungsreise nach Brasilien. Gegenbaurs Morphol Jahrb 70:1–66Google Scholar
  15. Buchholtz EA, Stepien CC (2009) Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evol Dev 79:69–79.  https://doi.org/10.1111/j.1525-142X.2008.00303.x CrossRefGoogle Scholar
  16. Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4:159–165CrossRefGoogle Scholar
  17. Ciancio MR, Castro MC, Galliari FC, Carlini AA, Asher RJ (2012) Evolutionary implications of dental eruption in Dasypus (Xenarthra). J Mammal Evol 19:1–8.  https://doi.org/10.1007/s10914-011-9177-7 CrossRefGoogle Scholar
  18. Cooper ZK (1930) A histological study of the integument of the armadillo, Tatusia novemcincta. Am J Anat 45:1–37CrossRefGoogle Scholar
  19. Cox PG, Jeffery N (2011) Reviewing the jaw-closing musculature in squirrels, rats and guinea pigs with contrast-enhanced microCT. Anat Rec 294:915–928CrossRefGoogle Scholar
  20. De Lange D (1926) Quelques remarques sur la placentation de Bradypus. Comptes Rendus l’Association des Anat Liège 321–333Google Scholar
  21. Emerling CA, Springer MS (2015) Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra. Proc R Soc B 282:2014.2192CrossRefGoogle Scholar
  22. Enders AC (1960a) Development and structure of the villous haemochorial placenta of the nine-banded armadillo (Dasypus novemcinctus). J Anat 94:34–45PubMedPubMedCentralGoogle Scholar
  23. Enders AC (1960b) Electron microscopic observations on the villous haemochorial placenta of the nine-banded armadillo (Dasypus novemcinctus). J Anat 94:205–215PubMedPubMedCentralGoogle Scholar
  24. Enders AC (2002) Implantation in the nine-banded armadillo: how does a single blastocyst form four embryos? Placenta 23:71–85. doi:  https://doi.org/10.1053/plac.2001.0753 CrossRefPubMedGoogle Scholar
  25. Enders AC (2008) Placentation in armadillos, with emphasis on development of the placenta in polyembryonic species. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 172–180Google Scholar
  26. Enders AC, Carter AM (2012) The evolving placenta: convergent evolution of variations in the endotheliochorial relationship. Placenta 33:319–326.  https://doi.org/10.1016/j.placenta.2012.02.008 CrossRefGoogle Scholar
  27. Fernández M (1914) Zur Anordnung der Embryonen und Form der Placenta bei Tatusia novemcincta. Anat Anz 46:253–258Google Scholar
  28. Fernández M (1922) Sobre la histogénesis y filogenia de la caparaza ósea de desdentados. In: Libro en honor de D. S. Ramón y Cajal Tomo II. Publicaciones de la Junta para el homenaje a Cajal, Madrid, pp 385–406Google Scholar
  29. Flower WH (1885) An Introduction to the Osteology of the Mammalia. MacMillan and Company, London,CrossRefGoogle Scholar
  30. Frechkop S (1949) Explication biologique, fournie par les tatous, d’un des caractères distinctifs des xénarthres et d’un caractère adaptif analogue chez les pangolins. Bull l’Institut R des Sci Nat Belgique 25:1–12Google Scholar
  31. Galis F (1999) Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J Exp Zool 285:19–26CrossRefGoogle Scholar
  32. Galliari FC, Carlini AA (2015) Ontogenetic criteria to distinguish vertebral types on the debated xenarthran synsacrum. J Morphol 276:494–502.  https://doi.org/10.1002/jmor.20356 CrossRefPubMedGoogle Scholar
  33. Galliari FC, Carlini AA, Sánchez-Villagra MR (2010) Evolution of the axial skeleton in armadillos (Mammalia, Dasypodidae). Mammal Biol 75:326–333. doi:  https://doi.org/10.1016/j.mambio.2009.03.014 CrossRefGoogle Scholar
  34. Gaudin TJ (1999) The morphology of the xenarthrous vertebrae (Mammalia: Xenarthra). Fieldiana Geol 41:1–38Google Scholar
  35. Gaudin TJ, Biewener AA (1992) The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra). J Morphol 214:63–81CrossRefGoogle Scholar
  36. Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96:622–634.  https://doi.org/10.1093/jmammal/gyv073 CrossRefGoogle Scholar
  37. Gervais P (1869) Zoologie et Paléontologie générales: Nouvelles Recherches sur les animaux vertébrés vivants et fossiles. Arthus Ber, ParisGoogle Scholar
  38. Gervais P (1873) Remarque au sujet du système dentaire de l’aï. J Zool 437–437Google Scholar
  39. Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar HN, Delsuc F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol 33:621–642.  https://doi.org/10.1093/molbev/msv250 CrossRefPubMedGoogle Scholar
  40. Goffart M (1971) Function and Form in the Sloth. Pergamon Press, OxfordGoogle Scholar
  41. Hallström BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–2816.  https://doi.org/10.1093/molbev/msq166 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hamilton HK, Levis WR, Martiniuk F, Cabrera A, Wolf J (2008) The role of the armadillo and sooty mangabey monkey in human leprosy. Internatl J Dermatol 47:545–550.  https://doi.org/10.1111/j.1365-4632.2008.03722.x CrossRefGoogle Scholar
  43. Hautier L, Bennett NC, Viljoen H, Howard L, Milinkovitch MC, Tzika AC, Goswami A, Asher RJ (2013) Patterns of ossification in southern versus northern placental mammals. Evolution 67:1994–2010.  https://doi.org/10.1111/evo.12071 CrossRefGoogle Scholar
  44. Hautier L, Charles C, Asher RJ, Gaunt SJ (2014) Ossification sequence and genetic patterning in the mouse axial skeleton. J Exp Zool Part B Mol Dev Evol. doi:  https://doi.org/10.1002/jez.b.22590 CrossRefGoogle Scholar
  45. Hautier L, Gomes Rodrigues H, Billet G, Asher RJ (2016) The hidden teeth of sloths: evolutionary vestiges and the development of a simplified dentition. Sci Rep 6:27763Google Scholar
  46. Hautier L, Stansfield FJ, Allen WRT, Asher RJ (2012) Skeletal development in the African elephant and ossification timing in placental mammals. Proc R Soc B Biol Sci 279:2188–2195.  https://doi.org/10.1098/rspb.2011.2481 CrossRefGoogle Scholar
  47. Hautier L, Weisbecker V, Goswami A, Knight F, Kardjilov N, Asher RJ (2011) Skeletal ossification and sequence heterochrony in xenarthran evolution. Evol Dev 13:460–476. doi:  https://doi.org/10.1111/j.1525-142X.2011.00503.x CrossRefGoogle Scholar
  48. Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswami A, Asher RJ (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–18908.  https://doi.org/10.1073/pnas.1010335107 CrossRefPubMedGoogle Scholar
  49. Hayssen V (2009) Bradypus tridactylus (Pilosa: Bradypodidae). Mammal Species 839:1–9.  https://doi.org/10.1644/839.1.Key CrossRefGoogle Scholar
  50. Hayssen V (2010) Bradypus variegatus (Pilosa: Bradypodidae). Mammal Species 42:19–32.  https://doi.org/10.1644/850.1.Key CrossRefGoogle Scholar
  51. Hayssen V (2011a) Tamandua tetradactyla (Pilosa: Myrmecophagidae). Mammal Species 43:64–74.  https://doi.org/10.1644/875.1 CrossRefGoogle Scholar
  52. Hayssen V (2011b) Choloepus hoffmanni (Pilosa: Megalonychidae). Mammal Species 43:37–55.  https://doi.org/10.1644/873.1 CrossRefGoogle Scholar
  53. Head JJ, Polly PD (2015) Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520:86–89.  https://doi.org/10.1038/nature14042 CrossRefPubMedGoogle Scholar
  54. Hensel R (1872) Beiträge zur Kenntnis der Säugethiere Süd-Brasiliens. Abhandlungen der Königl Akademie der Wissenschaften, BerlinCrossRefGoogle Scholar
  55. Hill R V (2006) Comparative anatomy and histology of xenarthran osteoderms. J Morphol 1460:1441–1460.  https://doi.org/10.1002/jmor CrossRefGoogle Scholar
  56. Jeffery NS, Stephenson R, Gallagher JA, Jarvis JC, Cox PG (2011) Micro-computed tomography with iodine staining reveals the arrangement of muscle fibres. J Biomech 44:189–192CrossRefGoogle Scholar
  57. Jenkins FA Jr (1970) Anatomy and function of expanded ribs in certain edentates and primates. J Mammal 51:288–301CrossRefGoogle Scholar
  58. Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster C a., Price S a., Rigby E a., Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648–2648.  https://doi.org/10.1890/08-1494.1 CrossRefGoogle Scholar
  59. King BF, Pinheiro PBN, Hunter RL (1982) The fine structure of the placental labyrinth in the sloth, Bradypus tridactylus. Anat Rec 202:15–22.  https://doi.org/10.1002/ar.1092020104 CrossRefPubMedGoogle Scholar
  60. Krmpotic CM, Galliari FC, Barbeito CG, Carlini AA (2012) Development of the integument of Dasypus hybridus and Chaetophractus vellerosus, and asynchronous events with respect to the postcranium. Mammal Biol 77:314–326.  https://doi.org/10.1016/j.mambio.2012.02.008 CrossRefGoogle Scholar
  61. Lebrun R (2014) ISE-MeshTools, a 3D interactive fossil reconstruction freeware. In: 12th Annual Meeting of EAVP, TorinoGoogle Scholar
  62. Leche W (1892) Studien über die Entwicklung des Zahnsystems bei den Saügethieren. Gegenbaurs Morphol Jahrb 19:502–547Google Scholar
  63. Li J, Miller MA, Hutchins GD, Burr DB (2005) Imaging bone microdamage in vivo with positron emission tomography. Bone 37:819–824CrossRefGoogle Scholar
  64. Limaye A (2006) Drishti - Volume Exploration and Presentation Tool. Poster presentation,Vis 2006, Baltimore Google Scholar
  65. Loughry WJ, McDonough CM (2013) The Nine-banded Armadillo: A Natural History. University of Oklahoma Press, NormanGoogle Scholar
  66. MacPhee RDE (1994) Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull Am Mus Nat Hist 220:1–214Google Scholar
  67. Maroy R, Boisgard R, Comtat C, Frouin V, Cathier P, Duchesnay E, Dollé F, Nielsen PE, Trébossen R, Tavitian B (2008) Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics. IEEE Trans Med Imaging 27:342–354.  https://doi.org/10.1109/TMI.2007.905106 CrossRefGoogle Scholar
  68. Martin BE (1916) Tooth development in Dasypus novemcinctus. J Morphol 27:647–691.CrossRefGoogle Scholar
  69. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub N a, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524.  https://doi.org/10.1126/science.1211028 CrossRefGoogle Scholar
  70. Mess AM, Favaron PO, Pfarrer C, Osmann C, Melo APF, Rodrigues RF, Ambrósio CE, Bevilacqua E, Miglino MA (2012) Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra). Reprod Biol Endocrinol 10:102.  https://doi.org/10.1186/1477-7827-10-102 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Milinkovitch M, Tzika A (2007) Escaping the mouse trap; the selection of new evo-devo model species. J Exp Zool Part B Mol Dev Evol 308:337–346CrossRefGoogle Scholar
  72. Müller J, Scheyer TM, Head JJ, Barrett PM, Werneburg I, Ericson PGP (2010) Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci USA 107:2118–2123.  https://doi.org/10.1073/pnas.0912622107 CrossRefGoogle Scholar
  73. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421.  https://doi.org/10.1101/gr.5918807 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Narita Y, Kuratani S (2005) Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool Part B Mol Dev Evol 106:91–106.  https://doi.org/10.1002/jez.b.21029 CrossRefGoogle Scholar
  75. Navarrete D, Ortega J (2011) Tamandua mexicana (Pilosa: Myrmecophagidae). Mammal Species 43:56–63.  https://doi.org/10.1644/874.1 CrossRefGoogle Scholar
  76. Newman HH, Patterson JT (1910) The development of the nine-banded armadillo from the primitive streak stage to birth; with especial reference to the question of specific polyembryony. J Morphol 21:359–423CrossRefGoogle Scholar
  77. Nowak RM (1999) Walker’s Mammals of the World, Sixth edition. The Johns Hopkins University Press, Baltimore and LondonGoogle Scholar
  78. Oliver JD, Jones KE, Hautier L, Loughry WJ, Pierce SE (2016) Vertebral bending mechanics and xenarthrous morphology in the nine-banded armadillo (Dasypus novemcinctus). J Exp Biol 219:2991–3002.  https://doi.org/10.1242/jeb.142331 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Parker WK (1885) On the structure and development of the skull in Mammalia. Part II. Edentata. Phil Trans R Soc Lond 176:1–119CrossRefGoogle Scholar
  80. Pouchet G, Chabry L (1884) Contribution à l’odontologie des mammifères. J l’Anatomie la Physiol 20:149–192Google Scholar
  81. Prasad AB, Allard MW, Program NC sequencing, Green ED (2008) Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795–1808.  https://doi.org/10.1093/molbev/msn104 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Prodöhl PA, Loughry WJ, McDonough CM, Nelson WS, Avise JC (1996) Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc Biol Sci 263:1643–1649.  https://doi.org/10.1098/rspb.1996.0240 CrossRefPubMedGoogle Scholar
  83. Redford KH, Eisenberg J (1992) Mammals of the Neotropics, Volume II. University of Chicago Press, ChicagoGoogle Scholar
  84. Rezende LC, Barbeito CG, Favaron PO, Mess A, Miglino MA (2012) The fetomaternal interface in the placenta of three species of armadillos (Eutheria, Xenarthra, Dasypodidae). Reprod Biol Endocrinol 10:38.  https://doi.org/10.1186/1477-7827-10-38 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Röse C (1892) Beiträge zur Zahnentwickling der Edentaten. Anat Anz 7:495–512Google Scholar
  86. Rose KD, Emry RJ (1993) Relationships of Xenarthra, Pholidota, and fossil “edentates”: The morphological evidence. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Placentalia. Springer Verlag, New York pp 81–102CrossRefGoogle Scholar
  87. Russell RJ (1953) Description of a new armadillo (Dasypus novemcinctus) from Mexico with remarks on geographic variation of the species. Proc Biol Soc Washingt 66:21–26Google Scholar
  88. Simon L (1902) Beiträge Anatomie und Entwicklung der Bradypodiden. Arch fur Naturgesh 68:239–260Google Scholar
  89. Simpson GG (1948) The beginning of the age of mammals in South America. Part 1. Introduction. Systematics: Marsupialia, Edentata, Condylartha, Litopterna and Notioprogonia. Bull Am Mus Nat Hist 91:1–232Google Scholar
  90. Spurgin AM (1904) Enamel in the teeth of an embryo edentate (Dasypus novemcinctus Linn). Am J Anat 3:75–84CrossRefGoogle Scholar
  91. Stephenson RS, Boyett MR, Hart G, Nikolaidou T, Cai X, Corno AF, Alphonso N, Jeffery N, Jarvis JC (2012) Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One 7:1–11.  https://doi.org/10.1371/journal.pone.0035299 CrossRefGoogle Scholar
  92. Storrs EE, Williams RJ (1968) A study of monozygous quadruplet armadillos in relation to mammalian inheritance. Proc Natl Acad Sci USA 60:910–914.  https://doi.org/10.1073/pnas.60.3.910 CrossRefGoogle Scholar
  93. Strahl H (1913) Ueber den Bau der Plazenta von D. novemcinctus. Anat Anz 44:440–447Google Scholar
  94. Superina M, Carreño N, Jahn GA (2009) Characterization of seasonal reproduction patterns in female pichis Zaedyus pichiy (Xenarthra: Dasypodidae) estimated by fecal sex steroid metabolites and ovarian histology. Anim Reprod Sci 116:358–369.  https://doi.org/10.1016/j.anireprosci.2009.02.015 CrossRefPubMedGoogle Scholar
  95. Thomas O (1889) A milk dentition in Orycteropus. Proc R Soc Lond 47:246–248CrossRefGoogle Scholar
  96. Tomes CS (1874) On the existence of an enamel organ in an armadillo (Tatusia peba). Q J Microsc Sci 53:44–48Google Scholar
  97. Turner W (1873) On the placentation of the sloths. Trans R Soc Edinburgh 27:71–104.CrossRefGoogle Scholar
  98. Vaska P, Woody CL, Schlyer DJ, Shokouhi S, Stoll SP, Pratte JF, O’Connor P, Junnarkar SS, Rescia S, Yu B, Porschke M, Kandasamy A, Villanueva A, Kriplani A, Radeka V, Volkow N, Lecomte R, Fontaine R (2004) RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 51:2718–2722.  https://doi.org/10.1109/TNS.2004.835740 CrossRefGoogle Scholar
  99. Vickaryous MK, Hall BK (2006) Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus. J Morphol 267:1273–1283.  https://doi.org/10.1002/jmor CrossRefPubMedGoogle Scholar
  100. Vizcaíno SF (2009) The teeth of the ‘toothless’: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35:343–366CrossRefGoogle Scholar
  101. Vizcaíno SF, Zárate M, Bargo MS, Dondas A (2001) Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders. Acta Palaeontol Pol 46:289–301Google Scholar
  102. Walls EW (1939) Myrmecophaga jubata: an embryo with placenta. J Anat 73:311–317PubMedPubMedCentralGoogle Scholar
  103. Werneburg I, Tzika AC, Hautier L, Asher RJ, Milinkovitch MC, Sánchez-Villagra MR (2013) Development and embryonic staging in non-model organisms: the case of an afrotherian mammal. J Anat 222:2–18.  https://doi.org/10.1111/j.1469-7580.2012.01509.x CrossRefPubMedGoogle Scholar
  104. Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395–14400.  https://doi.org/10.1073/pnas.0704342104 CrossRefGoogle Scholar
  105. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, BaltimoreGoogle Scholar
  106. Wislocki GB (1927) On the placentation of the tridactyl sloth (Bradypus griseus) with a description of the characters of the fetus. Contrib Embryol 19:211–227Google Scholar
  107. Wislocki GB (1928a) Observations on the gross and microscopic anatomy of the sloths (Bradypus griseus griseus Gray and Choloepus hoffmanni Peters). J Morphol 46:317–397.  https://doi.org/10.1002/jmor.1050460202 CrossRefGoogle Scholar
  108. Wislocki GB (1928b) Further observations upon the minute structure of the labyrinth in the placenta of the sloths. Anat Rec 40:385–395CrossRefGoogle Scholar
  109. Wislocki GB (1928c) On the placentation of th two-toed anteater (Cyclopes didactylus). Anat Rec 39:69–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lionel Hautier
    • 1
    • 2
    Email author
  • Jillian D. Oliver
    • 3
  • Stephanie E. Pierce
    • 4
  1. 1.UMR-CNRS 5554, Laboratoire de Paléontologie, Institut des Sciences de l’Evolution de MontpellierUniversité Montpellier, CNRS, IRD, EPHEMontpellier Cedex 5France
  2. 2.Mammal Section, Life Sciences, Vertebrate DivisionThe Natural History MuseumLondonUK
  3. 3.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA
  4. 4.Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations