Skip to main content

Advertisement

Log in

Phylogenetic and Morphological Analysis of Birch Mice (Genus Sicista, Family Sminthidae, Rodentia) in the Kazak Cradle with Description of a New Species

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Birch mice (genus Sicista) represent an early diverging lineage of dipodid rodents with a wide geographic distribution and a cryptic lifestyle that makes the genus difficult to study. As a result, reconstructing the evolutionary phylogeny of the group remains incomplete. Here, we report the molecular phylogeny of the genus based on mitochondrial and nuclear markers sampled from 12 of the 14 known living species. Moreover, we discuss morphological character (i.e., fur coloration and glans penis morphology) evolution in the genus. We have found a strong agreement between phylogenetic relationships among species and morphological peculiarities, both supporting a mountainous origin of Sicista, and a recent spread towards lowlands of some lineages. Glans penis structure turned out to be rather simple in the early lineages, but became more complex in phylogenetically later diverging taxa. The presence of dorsal stripes is associated with the colonization of lowland habitats. In addition, we describe here a species new to science from the Tien Shan Mountains, and provide evidence of uncovered cryptic diversity from the region. Additionally, we revise the identification of a specimen collected from China, thus documenting the presence of Sicista pseudonapaea, previously unreported from that country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Afanasyev AV (1960) Zoogeography of Kazakhstan. (On the Basis of the Distribution of Mammals). Kazakhstan Academy of Sciences Press, Alma-Ata, USSR, 260 pp (in Russian)

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Ausländer D, Hamar M, Hellwings S, Schnapp B (1959) Zur systematik und verreitung der Streifenmaus (Sicista subtilis nordmanni Keys. et Blas., 1840). Z Saugetierkd 24:68–77

    Google Scholar 

  • Baskevich MI, Okulova NM (2003) Comparative karyology and craniology in birch mice of the group "betulina" (Rodentia, Dipopoidea, Sicista). Zool Zhurnal 82:996–1009

    Google Scholar 

  • Baskevich MI, Okulova NM, Potapov SG, Varshavskii AA (2004) Diagnostics, distribution and evolution of unstriped birch mice Sicista (Rodentia, Dipodoidea) in the Caucasus. Zool Zhurnal 83:220–233

    Google Scholar 

  • Baskevich M, Potapov S, Mironova T (2016) Caucasian cryptic species of rodents as models in research on the problems of species and speciation. Biol Bull Rev 6:245–259

    Article  Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Breed WG (1986) Comparative morphology and evolution of the male reproductive tract in the Australian hydromyine rodents (Muridae). J Zool Lond 209:607–629

    Article  Google Scholar 

  • Caro T (2005) The adaptive significance of coloration in mammals. BioScience 55:125–136

    Article  Google Scholar 

  • Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Cassola F (2016) Sicista tianshanica. Available at http://www.iucnredlist.org/details/20195/0. Last accessed 16 December 2016

  • Charreau J, Chen Y, Gilder S, Dominguez S, Avouac J-P, Sen S, Sun D, Li Y, Wang W-M (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet Sci Lett 230:177–192

    Article  CAS  Google Scholar 

  • Colangelo P, Bannikova AA, Kryštufek B, Lebedev VS, Annesi F, Capanna E, Loy A (2010) Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol Phylogenet Evol 55:372–380

    Article  CAS  PubMed  Google Scholar 

  • Cserkész T, Aczél-Fridrich Z, Hegyeli Z, Sugár S, Czabán D, Horváth O, Sramkó G (2015) Rediscovery of Hungarian birch mouse (Sicista subtilis trizona) in Transylvania (Romania) with molecular characterisation of its phylogenetic affinities. Mammalia 79:215–224

    Google Scholar 

  • Cserkész T, Kitowski I, Czochra K, Rusin M (2009) Distribution of the Southern birch mouse (Sicista subtilis) in East-Poland: morphometric variations in discrete European populations of superspecies S. subtilis. Mammalia 73:221–229

    Article  Google Scholar 

  • Cserkész T, Rusin M, Sramkó G (2016) An integrative systematic revision of the European Southern birch mice (Rodentia: Sminthidae, Sicista subtilis group). Mammal Rev 46:114–130

    Article  Google Scholar 

  • DeBry RW, Sagel RM (2001) Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol Phylogenet Evol 19:290–301

    Article  CAS  PubMed  Google Scholar 

  • Dixson AF (1987) Observations on the evolution of the genitalia and copulatory behaviour in male primates. J Zool Lond 213:423–443

    Article  Google Scholar 

  • Ellerman JR (1961) Mammalia Rodentia. The Fauna of India including Pakistan, Burma and Ceylon, Vol. 3. Zoological Survey of India, Baptist Mission Press, Calcutta

  • Ellerman JR, Morrison-Scott TCS (1951) Checklist of Palaearctic and Indian mammals, 1758–1946. British Museum, Natural History, London

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Friley CE Jr (1947) Preparation and preservation of the baculum of mammals. J Mammal 28:395–397

  • Giraudoux P, Raoul F (2015) MicromAsia: small mammal surveys in western China and Kyrgyztan. Chrono-environnement. https://dataosu.obs-besancon.fr/FR-18008901306731-2015-08-06-20_MicromAsia-small-mammal-surveys-in-Western-China.html Accessed 20 September 2016

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Proceedings of the Conference held in Nucleic acids symposium series 41: 95–98.

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9

    Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Biol 38:297–309

    Google Scholar 

  • Holden ME, Cserkész T, Musser GM (2017) Family Sminthidae. In: Wilson DE, Lacher TE, Mittermeier RA (eds) Handbook of the Mammals of the World - Volume 7 - Rodents II. Lynx Edicions, Barcelona (in press)

    Google Scholar 

  • Holden ME, Musser GG (2005) Family Dipodidae. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 871–893

    Google Scholar 

  • Jia D-R, Abbott RJ, Liu T-L, Mao K-S, Bartish IV, Liu J-Q (2012) Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y (2010) New material of dipodid rodents (Dipodidae, Rodentia) from the early Miocene of Gashunyinadege, Nei Mongol, China. J Vertebr Paleontol 30:1860–1873

    Article  Google Scholar 

  • Kimura Y (2011) The earliest record of birch mice from the early Miocene Nei Mongol, China. Naturwissenschaften 98:87–95

    Article  CAS  PubMed  Google Scholar 

  • Kovalskaya YM, Aniskin VM, Bogomolov PL, Surov AV, Tikhonov IA, Tikhonova GN, Robinson TJ, Volobouev VT (2011) Karyotype reorganisation in the subtilis group of birch mice (Rodentia, Dipodidae, Sicista): unexpected taxonomic diversity within a limited distribution. Cytogenet Genome Res 132:271–288

    Article  CAS  PubMed  Google Scholar 

  • Kryštufek B, Vohralík V (2005) Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae. Zalozba Annales. Univerza na Primorskem, Koper

    Google Scholar 

  • Lomolino M (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Ge D, Shenbrot G, Pisano J, Yang Q, Zhang Z (2016) Hypsodonty of Dipodidae (Rodentia) in correlation with diet preferences and habitats. J Mammal Evol doi: https://doi.org/10.1007/s10914-016-9352-y

  • Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE (2016) Developmental mechanisms of stripe patterns in rodents. Nature 539:518–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31

    Article  Google Scholar 

  • McShea DW (1991) Complexity and evolution: what everybody knows. Biol Philos 6:303–324

    Article  Google Scholar 

  • Méhely L (1913) Magyarország csíkos egerei. Mathematikai és Természettudományi Közlemények 31:3–45

    Google Scholar 

  • Ognev SI (1935) A systematical review of the Russian species of the genus Sicista. Research Institute of Zoology of Moscow University Bulletin 7:51–58

    Google Scholar 

  • Ognev SI (1948) Mammals of the USSR and Adjacent Countries: Rodents (continued). Izdatel'stvo Akademi Nauk SSSR, Moscow-Leningrad

    Google Scholar 

  • O'Hanlon JK, Sachs BD (1986) Fertility of mating in rats (Rattus norvegicus): contributions of androgen-dependent morphology and actions of the penis. J Comp Psychol 100:178–187

    Article  CAS  PubMed  Google Scholar 

  • Okulova NM, Baskevich MI (2003) Multivariate analysis of cranial measurements in unstriped birch mice of the Caucasus (Sicista, Rodentia, Mammalia) as an approach to the study of the species diversity in this rodent group. Dokl Biol Sci 390:242–244

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Wang Y, Zhong Y, Rus Hoelzel A, Papenfuss TJ, Zeng X, Ananjeva NB, Zhang Y-p (2003) A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 27:398–409

    Article  CAS  PubMed  Google Scholar 

  • Pavlinov IY (1995) Mammals of Eurasia, 1: Rodentia. Moscow University Press, Moscow

    Google Scholar 

  • Pavlinov IY, Lissovsky A (2012) The Mammals of Russia: A Taxonomic and Geographic Reference. Zoological Museum of Moscow State University, KMK Scientific Press Ltd, Moscow

    Google Scholar 

  • Pisano J, Condamine FL, Lebedev V, Bannikova A, Quéré J-P, Shenbrot GI, Pagès M, Michaux JR (2015) Out of Himalaya: the impact of past Asian environmental changes on the evolutionary and biogeographical history of Dipodoidea (Rodentia). J Biogeogr 42:856–870

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Shenbrot GI, Sokolov VE, Heptner VG, Kovalskaya YM (1995) The Mammals of Russia and Adjacent Regions. Dipodoidea. Nauka Press, Moscow

    Google Scholar 

  • Sludskiy AA, Bekenov A, Borisenko VA, Grachev YA, Ismagilov МI, Kapitonov VI, Strautman EI (1977) Mammals of Kazakhstan. In four volumes. Nauka of KazSSR, Alma-Ata

    Google Scholar 

  • Smith AT, Xie Y (2013) Mammals of China. Princeton University Press, Princeton

    Book  Google Scholar 

  • Sokolov VE, Baskevich MI, Kovalskaya YM (1986) Karyotype variability in the southern birch mouse Sicista subtilis Pallas and the substantiation of species validity for Sicista severtzovi Ognev. Zool Zhurnal 65:1684–1692

    Google Scholar 

  • Sokolov VE, Kovalskaya YM (1990a) Systematics of the genus Sicista and chromosomal forms of the Tian shan birch mouse, S. tianshanica Salensky, 1903. Proceedings of the Conference held in V. Congress of the All-Union Theriological Society AS USSR, Moscow

  • Sokolov VE, Kovalskaya YM (1990b) Karyotypes of birch mice (Sicista, Dipodoidea, Rodentia) in the northern Tien-Shan and Sikhote-Alin. Zool Zhurnal 69:152–157

    Google Scholar 

  • Sokolov VE, Kovalskaya YM, Baskevich MI (1982) Taxonomy and comparative cytogenetics of some species of the genus Sicista (Rodentia, Dipodidae). Zool Zhurnal 61:102–108

    Google Scholar 

  • Sokolov VE, Kovalskaya YM, Baskevich MI (1987) Review of karyological research and the problems of systematics in the genus Sicista (Zapodidae, Rodentia, Mammalia). Fol Zool 36:35–44

    Google Scholar 

  • Stefanović S, Rice DW, Palmer JD (2004) Long branch attraction, taxon sampling, and the earliest angiosperms: amborella or monocots? BMC Evol Biol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Zhu R, Bowler J (2004) Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet Sci Lett 219:239–253

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4

  • van der Kooij J, Bína P, Dahl-Møller J, Grahn J, Sattarvandi A, Abrahamsson Å, Schulz B, Schulz J (2016) The Northern birch mouse - new inventory techniques. Fauna och Flora 111:32–39

  • Vinogradov BS (1925) On the structure of the external genitalia in Dipodidae and Zapodidae (Rodentia) as a classificatory character. Proc Zool Soc Lond 95:577–585

    Article  Google Scholar 

  • Wong PBY, Wiley EO, Johnson WE, Ryder OA, O’Brien SJ, Haussler D, Koepfli K-P, Houck ML, Perelman P, Mastromonaco G, Bentley AC, Venkatesh B, Zhang Y-p, Murphy RW, G10Kcos (2012) Tissue sampling methods and standards for vertebrate genomics. GigaScience 1:8–8

  • Yue H, Yan C, Tu F, Yang C, Ma W, Fan Z, Song Z, Owens J, Liu S, Zhang X (2015) Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. Biochem Syst Ecol 60:123–130

    Article  CAS  Google Scholar 

  • Zhang M-L, Sanderson SC, Sun Y-X, Byalt VV, Hao X-L (2014) Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae). J Integr Plant Biol 56:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-J, Stöck M, Zhang P, Wang X-L, Zhou H, Qu L-H (2008) Phylogeography of a widespread terrestrial vertebrate in a barely-studied Palearctic region: green toads (Bufo viridis subgroup) indicate glacial refugia in Eastern Central Asia. Genetica 134:353–365

    Article  PubMed  Google Scholar 

  • Zhang Q, Xia L, Kimura Y, Shenbrot G, Zhang Z, Ge D, Yang Q (2013) Tracing the origin and diversification of Dipodoidea (Order: Rodentia): evidence from fossil record and molecular phylogeny. Evol Biol 40:32–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. N. M. Mukhitdinov and K. Jakipova from the Al-Farabi Kazakh National University (Almaty), to Prof. K. P. Prokopov and M. A. Bazarovna from the Sarsen Amanzholov East Kazakhstan State University (Öskemen), to Е. Mustafin and G. A. Ulanbekovna from the Katon-Karagay National Park Directorate, and to K. Tenkebaev from the Markakol Reserve Directorate for all their help and the authorities for collection permits. We thank T. Görföl and G. Csorba from the Hungarian Natural History Museum (Budapest) for their support. We are highly indebted to Polina A. Volkova (South-West Moscow High-School, Moscow, Russia) for her irreplaceable help in the field, and Francis Raoul (CNRS Université Bourgogne Franche-Comté UsC INRA) for providing the specimen of Sicista concolor. Tamás Malkócs kindly polished the English of the manuscript.

Funding

This work was generously funded by the Rufford Small Grants Foundations’ ‘Hidden Biodiversity of Mountain Meadows in East Kazakhstan’ project, and the Hungarian Scientific Research Fund (OTKA PD105116 to TCs, OTKA PD109686 to GS, and OTKA K112527 to AF). Work of AF was supported through the New National Excellence Program of the Ministry of Human Capacities of Hungary. The work of GS was supported by the “János Bolyai Scholarship” (BO/00001/15) of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Cserkész.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cserkész, T., Fülöp, A., Almerekova, S. et al. Phylogenetic and Morphological Analysis of Birch Mice (Genus Sicista, Family Sminthidae, Rodentia) in the Kazak Cradle with Description of a New Species. J Mammal Evol 26, 147–163 (2019). https://doi.org/10.1007/s10914-017-9409-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-017-9409-6

Keywords

Navigation