Phylogenetic and Morphological Analysis of Birch Mice (Genus Sicista, Family Sminthidae, Rodentia) in the Kazak Cradle with Description of a New Species

  • Tamás Cserkész
  • Attila Fülöp
  • Shyryn Almerekova
  • Tamás Kondor
  • Levente Laczkó
  • Gábor Sramkó
Original Paper

Abstract

Birch mice (genus Sicista) represent an early diverging lineage of dipodid rodents with a wide geographic distribution and a cryptic lifestyle that makes the genus difficult to study. As a result, reconstructing the evolutionary phylogeny of the group remains incomplete. Here, we report the molecular phylogeny of the genus based on mitochondrial and nuclear markers sampled from 12 of the 14 known living species. Moreover, we discuss morphological character (i.e., fur coloration and glans penis morphology) evolution in the genus. We have found a strong agreement between phylogenetic relationships among species and morphological peculiarities, both supporting a mountainous origin of Sicista, and a recent spread towards lowlands of some lineages. Glans penis structure turned out to be rather simple in the early lineages, but became more complex in phylogenetically later diverging taxa. The presence of dorsal stripes is associated with the colonization of lowland habitats. In addition, we describe here a species new to science from the Tien Shan Mountains, and provide evidence of uncovered cryptic diversity from the region. Additionally, we revise the identification of a specimen collected from China, thus documenting the presence of Sicista pseudonapaea, previously unreported from that country.

Keywords

Altai Mts. character evolution glans penis male genitalia Dipodoidea Tien Shan 

Notes

Acknowledgements

We are grateful to Prof. N. M. Mukhitdinov and K. Jakipova from the Al-Farabi Kazakh National University (Almaty), to Prof. K. P. Prokopov and M. A. Bazarovna from the Sarsen Amanzholov East Kazakhstan State University (Öskemen), to Е. Mustafin and G. A. Ulanbekovna from the Katon-Karagay National Park Directorate, and to K. Tenkebaev from the Markakol Reserve Directorate for all their help and the authorities for collection permits. We thank T. Görföl and G. Csorba from the Hungarian Natural History Museum (Budapest) for their support. We are highly indebted to Polina A. Volkova (South-West Moscow High-School, Moscow, Russia) for her irreplaceable help in the field, and Francis Raoul (CNRS Université Bourgogne Franche-Comté UsC INRA) for providing the specimen of Sicista concolor. Tamás Malkócs kindly polished the English of the manuscript.

Funding

This work was generously funded by the Rufford Small Grants Foundations’ ‘Hidden Biodiversity of Mountain Meadows in East Kazakhstan’ project, and the Hungarian Scientific Research Fund (OTKA PD105116 to TCs, OTKA PD109686 to GS, and OTKA K112527 to AF). Work of AF was supported through the New National Excellence Program of the Ministry of Human Capacities of Hungary. The work of GS was supported by the “János Bolyai Scholarship” (BO/00001/15) of the Hungarian Academy of Sciences.

Supplementary material

10914_2017_9409_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)

References

  1. Afanasyev AV (1960) Zoogeography of Kazakhstan. (On the Basis of the Distribution of Mammals). Kazakhstan Academy of Sciences Press, Alma-Ata, USSR, 260 pp (in Russian)Google Scholar
  2. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefPubMedGoogle Scholar
  3. Ausländer D, Hamar M, Hellwings S, Schnapp B (1959) Zur systematik und verreitung der Streifenmaus (Sicista subtilis nordmanni Keys. et Blas., 1840). Z Saugetierkd 24:68–77Google Scholar
  4. Baskevich MI, Okulova NM (2003) Comparative karyology and craniology in birch mice of the group "betulina" (Rodentia, Dipopoidea, Sicista). Zool Zhurnal 82:996–1009Google Scholar
  5. Baskevich MI, Okulova NM, Potapov SG, Varshavskii AA (2004) Diagnostics, distribution and evolution of unstriped birch mice Sicista (Rodentia, Dipodoidea) in the Caucasus. Zool Zhurnal 83:220–233Google Scholar
  6. Baskevich M, Potapov S, Mironova T (2016) Caucasian cryptic species of rodents as models in research on the problems of species and speciation. Biol Bull Rev 6:245–259CrossRefGoogle Scholar
  7. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  8. Breed WG (1986) Comparative morphology and evolution of the male reproductive tract in the Australian hydromyine rodents (Muridae). J Zool Lond 209:607–629CrossRefGoogle Scholar
  9. Caro T (2005) The adaptive significance of coloration in mammals. BioScience 55:125–136CrossRefGoogle Scholar
  10. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109CrossRefPubMedGoogle Scholar
  11. Cassola F (2016) Sicista tianshanica. Available at http://www.iucnredlist.org/details/20195/0. Last accessed 16 December 2016
  12. Charreau J, Chen Y, Gilder S, Dominguez S, Avouac J-P, Sen S, Sun D, Li Y, Wang W-M (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet Sci Lett 230:177–192CrossRefGoogle Scholar
  13. Colangelo P, Bannikova AA, Kryštufek B, Lebedev VS, Annesi F, Capanna E, Loy A (2010) Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol Phylogenet Evol 55:372–380CrossRefPubMedGoogle Scholar
  14. Cserkész T, Aczél-Fridrich Z, Hegyeli Z, Sugár S, Czabán D, Horváth O, Sramkó G (2015) Rediscovery of Hungarian birch mouse (Sicista subtilis trizona) in Transylvania (Romania) with molecular characterisation of its phylogenetic affinities. Mammalia 79:215–224Google Scholar
  15. Cserkész T, Kitowski I, Czochra K, Rusin M (2009) Distribution of the Southern birch mouse (Sicista subtilis) in East-Poland: morphometric variations in discrete European populations of superspecies S. subtilis. Mammalia 73:221–229CrossRefGoogle Scholar
  16. Cserkész T, Rusin M, Sramkó G (2016) An integrative systematic revision of the European Southern birch mice (Rodentia: Sminthidae, Sicista subtilis group). Mammal Rev 46:114–130CrossRefGoogle Scholar
  17. DeBry RW, Sagel RM (2001) Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol Phylogenet Evol 19:290–301CrossRefPubMedGoogle Scholar
  18. Dixson AF (1987) Observations on the evolution of the genitalia and copulatory behaviour in male primates. J Zool Lond 213:423–443CrossRefGoogle Scholar
  19. Ellerman JR (1961) Mammalia Rodentia. The Fauna of India including Pakistan, Burma and Ceylon, Vol. 3. Zoological Survey of India, Baptist Mission Press, CalcuttaGoogle Scholar
  20. Ellerman JR, Morrison-Scott TCS (1951) Checklist of Palaearctic and Indian mammals, 1758–1946. British Museum, Natural History, LondonGoogle Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  22. Friley CE Jr (1947) Preparation and preservation of the baculum of mammals. J Mammal 28:395–397Google Scholar
  23. Giraudoux P, Raoul F (2015) MicromAsia: small mammal surveys in western China and Kyrgyztan. Chrono-environnement. https://dataosu.obs-besancon.fr/FR-18008901306731-2015-08-06-20_MicromAsia-small-mammal-surveys-in-Western-China.html Accessed 20 September 2016
  24. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  25. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Proceedings of the Conference held in Nucleic acids symposium series 41: 95–98.Google Scholar
  26. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9Google Scholar
  27. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Biol 38:297–309Google Scholar
  28. Holden ME, Cserkész T, Musser GM (2017) Family Sminthidae. In: Wilson DE, Lacher TE, Mittermeier RA (eds) Handbook of the Mammals of the World - Volume 7 - Rodents II. Lynx Edicions, Barcelona (in press)Google Scholar
  29. Holden ME, Musser GG (2005) Family Dipodidae. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 871–893Google Scholar
  30. Jia D-R, Abbott RJ, Liu T-L, Mao K-S, Bartish IV, Liu J-Q (2012) Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133CrossRefPubMedGoogle Scholar
  31. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  32. Kimura Y (2010) New material of dipodid rodents (Dipodidae, Rodentia) from the early Miocene of Gashunyinadege, Nei Mongol, China. J Vertebr Paleontol 30:1860–1873CrossRefGoogle Scholar
  33. Kimura Y (2011) The earliest record of birch mice from the early Miocene Nei Mongol, China. Naturwissenschaften 98:87–95CrossRefPubMedGoogle Scholar
  34. Kovalskaya YM, Aniskin VM, Bogomolov PL, Surov AV, Tikhonov IA, Tikhonova GN, Robinson TJ, Volobouev VT (2011) Karyotype reorganisation in the subtilis group of birch mice (Rodentia, Dipodidae, Sicista): unexpected taxonomic diversity within a limited distribution. Cytogenet Genome Res 132:271–288CrossRefPubMedGoogle Scholar
  35. Kryštufek B, Vohralík V (2005) Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae. Zalozba Annales. Univerza na Primorskem, KoperGoogle Scholar
  36. Lomolino M (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13CrossRefGoogle Scholar
  37. Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083CrossRefPubMedGoogle Scholar
  38. Ma H, Ge D, Shenbrot G, Pisano J, Yang Q, Zhang Z (2016) Hypsodonty of Dipodidae (Rodentia) in correlation with diet preferences and habitats. J Mammal Evol doi:  https://doi.org/10.1007/s10914-016-9352-y
  39. Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE (2016) Developmental mechanisms of stripe patterns in rodents. Nature 539:518–523CrossRefPubMedPubMedCentralGoogle Scholar
  40. McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31CrossRefGoogle Scholar
  41. McShea DW (1991) Complexity and evolution: what everybody knows. Biol Philos 6:303–324CrossRefGoogle Scholar
  42. Méhely L (1913) Magyarország csíkos egerei. Mathematikai és Természettudományi Közlemények 31:3–45Google Scholar
  43. Ognev SI (1935) A systematical review of the Russian species of the genus Sicista. Research Institute of Zoology of Moscow University Bulletin 7:51–58Google Scholar
  44. Ognev SI (1948) Mammals of the USSR and Adjacent Countries: Rodents (continued). Izdatel'stvo Akademi Nauk SSSR, Moscow-LeningradGoogle Scholar
  45. O'Hanlon JK, Sachs BD (1986) Fertility of mating in rats (Rattus norvegicus): contributions of androgen-dependent morphology and actions of the penis. J Comp Psychol 100:178–187CrossRefPubMedGoogle Scholar
  46. Okulova NM, Baskevich MI (2003) Multivariate analysis of cranial measurements in unstriped birch mice of the Caucasus (Sicista, Rodentia, Mammalia) as an approach to the study of the species diversity in this rodent group. Dokl Biol Sci 390:242–244CrossRefPubMedGoogle Scholar
  47. Pang J, Wang Y, Zhong Y, Rus Hoelzel A, Papenfuss TJ, Zeng X, Ananjeva NB, Zhang Y-p (2003) A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 27:398–409CrossRefPubMedGoogle Scholar
  48. Pavlinov IY (1995) Mammals of Eurasia, 1: Rodentia. Moscow University Press, MoscowGoogle Scholar
  49. Pavlinov IY, Lissovsky A (2012) The Mammals of Russia: A Taxonomic and Geographic Reference. Zoological Museum of Moscow State University, KMK Scientific Press Ltd, MoscowGoogle Scholar
  50. Pisano J, Condamine FL, Lebedev V, Bannikova A, Quéré J-P, Shenbrot GI, Pagès M, Michaux JR (2015) Out of Himalaya: the impact of past Asian environmental changes on the evolutionary and biogeographical history of Dipodoidea (Rodentia). J Biogeogr 42:856–870CrossRefGoogle Scholar
  51. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shenbrot GI, Sokolov VE, Heptner VG, Kovalskaya YM (1995) The Mammals of Russia and Adjacent Regions. Dipodoidea. Nauka Press, MoscowGoogle Scholar
  53. Sludskiy AA, Bekenov A, Borisenko VA, Grachev YA, Ismagilov МI, Kapitonov VI, Strautman EI (1977) Mammals of Kazakhstan. In four volumes. Nauka of KazSSR, Alma-AtaGoogle Scholar
  54. Smith AT, Xie Y (2013) Mammals of China. Princeton University Press, PrincetonCrossRefGoogle Scholar
  55. Sokolov VE, Baskevich MI, Kovalskaya YM (1986) Karyotype variability in the southern birch mouse Sicista subtilis Pallas and the substantiation of species validity for Sicista severtzovi Ognev. Zool Zhurnal 65:1684–1692Google Scholar
  56. Sokolov VE, Kovalskaya YM (1990a) Systematics of the genus Sicista and chromosomal forms of the Tian shan birch mouse, S. tianshanica Salensky, 1903. Proceedings of the Conference held in V. Congress of the All-Union Theriological Society AS USSR, MoscowGoogle Scholar
  57. Sokolov VE, Kovalskaya YM (1990b) Karyotypes of birch mice (Sicista, Dipodoidea, Rodentia) in the northern Tien-Shan and Sikhote-Alin. Zool Zhurnal 69:152–157Google Scholar
  58. Sokolov VE, Kovalskaya YM, Baskevich MI (1982) Taxonomy and comparative cytogenetics of some species of the genus Sicista (Rodentia, Dipodidae). Zool Zhurnal 61:102–108Google Scholar
  59. Sokolov VE, Kovalskaya YM, Baskevich MI (1987) Review of karyological research and the problems of systematics in the genus Sicista (Zapodidae, Rodentia, Mammalia). Fol Zool 36:35–44Google Scholar
  60. Stefanović S, Rice DW, Palmer JD (2004) Long branch attraction, taxon sampling, and the earliest angiosperms: amborella or monocots? BMC Evol Biol 4:35CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sun J, Zhu R, Bowler J (2004) Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet Sci Lett 219:239–253CrossRefGoogle Scholar
  62. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4Google Scholar
  63. van der Kooij J, Bína P, Dahl-Møller J, Grahn J, Sattarvandi A, Abrahamsson Å, Schulz B, Schulz J (2016) The Northern birch mouse - new inventory techniques. Fauna och Flora 111:32–39Google Scholar
  64. Vinogradov BS (1925) On the structure of the external genitalia in Dipodidae and Zapodidae (Rodentia) as a classificatory character. Proc Zool Soc Lond 95:577–585CrossRefGoogle Scholar
  65. Wong PBY, Wiley EO, Johnson WE, Ryder OA, O’Brien SJ, Haussler D, Koepfli K-P, Houck ML, Perelman P, Mastromonaco G, Bentley AC, Venkatesh B, Zhang Y-p, Murphy RW, G10Kcos (2012) Tissue sampling methods and standards for vertebrate genomics. GigaScience 1:8–8Google Scholar
  66. Yue H, Yan C, Tu F, Yang C, Ma W, Fan Z, Song Z, Owens J, Liu S, Zhang X (2015) Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. Biochem Syst Ecol 60:123–130CrossRefGoogle Scholar
  67. Zhang M-L, Sanderson SC, Sun Y-X, Byalt VV, Hao X-L (2014) Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae). J Integr Plant Biol 56:1125–1135CrossRefPubMedGoogle Scholar
  68. Zhang Y-J, Stöck M, Zhang P, Wang X-L, Zhou H, Qu L-H (2008) Phylogeography of a widespread terrestrial vertebrate in a barely-studied Palearctic region: green toads (Bufo viridis subgroup) indicate glacial refugia in Eastern Central Asia. Genetica 134:353–365CrossRefPubMedGoogle Scholar
  69. Zhang Q, Xia L, Kimura Y, Shenbrot G, Zhang Z, Ge D, Yang Q (2013) Tracing the origin and diversification of Dipodoidea (Order: Rodentia): evidence from fossil record and molecular phylogeny. Evol Biol 40:32–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Tamás Cserkész
    • 1
  • Attila Fülöp
    • 2
  • Shyryn Almerekova
    • 3
  • Tamás Kondor
    • 1
  • Levente Laczkó
    • 4
  • Gábor Sramkó
    • 4
    • 5
  1. 1.Department of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
  2. 2.MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
  3. 3.Department of Biodiversity and BioresourcesAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  4. 4.Department of BotanyUniversity of DebrecenDebrecenHungary
  5. 5.MTA-DE “Lendület” Evolutionary Phylogenomics Research GroupDebrecenHungary

Personalised recommendations