Vertical Locomotion in Micromys minutus (Rodentia: Muridae): Insights into the Evolution of Eutherian Climbing

Abstract

Climbing is integral to scansorial and arboreal lifestyles as it enables access to and vertical ranging within the arboreal strata. As early eutherian mammals exhibit osteological correlates for arboreality, it is important to assess the behavioral mechanisms that are related to competent vertical climbing. In this context, we examined climbing gaits in one of the smallest extant rodents, the Eurasian harvest mouse. For these purposes, we filmed six adult Micromys minutus at 240 fps moving on four different substrate sizes (2 mm, 5 mm, 10 mm, 25 mm), during both vertical ascents and descents. All climbing cycles were lateral sequence slow gaits. Upward climbing was characterized by a higher contribution of the hind limbs, longer swing phases, and a significant involvement of stride frequency in velocity modulation. On the other hand, downward climbing was promoted by employing gaits of even lower diagonality, an increased contact with the substrate, enhanced role of the forelimbs, and a subtler modulation of velocity by stride frequency. Eurasian harvest mice effectively negotiate the finest substrates, but their effectiveness decreased significantly on the largest ones. The morphofunctional similarities of M. minutus to Juramaia sinensis and Eomaia scansoria imply analogous behaviors in early eutherians, which apparently contributed to the successful access and exploitation of the fine-branch arboreal milieu. In this way, extant small arboreal mammals can constitute good models for elucidating and comprehending the adaptive significance of behavioral mechanisms that are related to the evolution of arboreality in early mammals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alexander RM (1977) Terrestrial locomotion. In: Alexander RM, Goldspink G (eds) Mechanics and Energetics of Animal Locomotion. Chapman & Hall, London, pp 168–203

  2. Alexander RM (1992) Exploring Biomechanics: Animals in Motion. Scientific American Library, New York

  3. Alexander RM, Jayes AS (1983) A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J Zool 201:135–152

    Article  Google Scholar 

  4. Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361

    Article  Google Scholar 

  5. ASAB/ABS (2012) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 83:301–309

    Article  Google Scholar 

  6. Bence SL, Stander K, Griffiths M (2003) Habitat characteristics of harvest mouse nests on arable farmland. Agric Ecosyst Environ 99:179–186

    Article  Google Scholar 

  7. Bi S, Wang Y, Guan J, Sheng, X, Meng, J (2014) Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514:579–584

    CAS  Article  PubMed  Google Scholar 

  8. Bonnan MF, Shulman J, Varadharajan R, Gilbert C, Wilkes M, Horner A, Brainerd E (2016) Forelimb kinematics of rats using XROMM, with implications for small eutherians and their fossil relatives. PLoS One 11:e0149377

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown D (2009) Tracker video analysis and modeling tool. October 3, 2013

  10. Camargo NF, Sano NY, Ribeiro JF, Vieira EM (2016) Contrasting the realized and fundamental niche of the arboreal walking performance of neotropical rodents. J Mammal 97:155–166

    Article  Google Scholar 

  11. Cartmill M (1974a) Pads and claws in arboreal locomotion. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 45–83

    Google Scholar 

  12. Cartmill M (1974b) Rethinking primate origins. Science 184:436–443

    CAS  Article  PubMed  Google Scholar 

  13. Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Belknap Press, Cambridge, pp 73–88

  14. Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Linn Soc 136:401–420

    Article  Google Scholar 

  15. Cartmill M, Lemelin P, Schmitt D (2007) Primate gaits and primate origins. In: Ravosa M, Dagosto M (eds) Primate Origins: Adaptations and Evolution. Springer, New York, pp 403–435

  16. Delciellos AC, Vieira MV (2006) Arboreal walking performance in seven didelphid marsupials as an aspect of their fundamental niche. Austral Ecol 31:449–457

    Article  Google Scholar 

  17. Delciellos AC, Vieira MV (2007) Stride lengths and frequencies of arboreal walking in seven species of didelphid marsupials. Acta Theriol 52:101–111

    Article  Google Scholar 

  18. Delciellos AC, Vieira MV (2009) Allometric, phylogenetic, and adaptive components of climbing performance in seven species of didelphid marsupials. J Mammal 90:104–113

    Article  Google Scholar 

  19. Demes B, Larson SG, Stern JT Jr, Jungers WL, Biknevicius AR, Schmitt D (1994) The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. J Hum Evol 26:353–374

    Article  Google Scholar 

  20. Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinematics of small therian mammals. J Exp Biol 205:1315–1338

    PubMed  Google Scholar 

  21. Franz TM, Demes B, Carlson KJ (2005) Gait mechanics of lemurid primates on terrestrial and arboreal substrates. J Hum Evol 48:199–217

    Article  PubMed  Google Scholar 

  22. Gaetano LC, Rougier GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vertebr Paleontol 31:829–843

    Article  Google Scholar 

  23. Gasc J-P (2001) Comparative aspects of gait, scaling and mechanics in mammals. Comp Biochem Physiol - Part A Mol & Integr Physiol 131:121–133

    CAS  Article  Google Scholar 

  24. Haffner M (1996) A tendon-locking mechanism in two climbing rodents, Muscardinus avelfanarius and Micromys minutus (Mammalia, Rodentia). J Morph 227:219–227

    Article  Google Scholar 

  25. Haffner M (1998) A comparison of the gross morphology and micro-anatomy of the foot pads in two fossorial and two climbing rodents (Mammalia). J Zool 244:287–294

    Article  Google Scholar 

  26. Hanna JB (2006) Kinematics of vertical climbing in lorises and Cheirogaleus medius. J Hum Evol 50:469–478

    CAS  Article  PubMed  Google Scholar 

  27. Hanna JB, Schmitt D (2011) Locomotor energetics in primates: gait mechanics and their relationship to the energetics of vertical and horizontal locomotion. Am J Phys Anthropol 145:43–54

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harrell FE (2001) Regression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer-Verlag, New York

  29. Harris S (1970) The Secret Life of the Harvest Mouse. Hamlyn, London

  30. Harris S (1979a) History, distribution, status and habitat requirements of the harvest mouse (Micromys minutus) in Britain. Mammal Rev 9:159–171

    Article  Google Scholar 

  31. Harris S (1979b) Breeding season, litter size and nestling mortality of the harvest mouse, Micromys minutus (Rodentia: Muridae), in Britain. J Zool 188:437–442

    Article  Google Scholar 

  32. Hesse B, Nyakatura JA, Fischer MS, Schmidt M (2014) Adjustments of limb mechanics in cotton-top tamarins to moderate and steep support orientations: significance for the understanding of early primate evolution. J Mammal Evol 22:435–450

    Article  Google Scholar 

  33. Hildebrand M (1967) Symmetrical gaits of primates. Am J Phys Anthropol 26:119–130

    Article  Google Scholar 

  34. Hildebrand M (1968) Symmetrical gaits of dogs in relation to body build. J Morphol 124:353–359

    CAS  Article  PubMed  Google Scholar 

  35. Hildebrand M (1976) Analysis of tetrapod gaits: general considerations and symmetrical gaits. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural Control of Locomotion. Plenum Press, New York, pp 203–236

  36. Hildebrand M (1995) Analysis of Vertebrate Structure, 4th edn. John Wiley & Sons, Inc., New York

  37. Hirasaki E, Kumakura H, Matano S (1993) Kinesiological characteristics of vertical climbing in Ateles geoffroy and Macaca fuscata. Folia Primatol 61:148–156

    CAS  Article  PubMed  Google Scholar 

  38. Hirasaki E, Kumakura H, Matano S (2000) Biomechanical analysis of vertical climbing in the spider monkey and the Japanese macaque. Am J Phys Anthropol 113:455–472

    CAS  Article  PubMed  Google Scholar 

  39. Hirasaki E, Matano S, Nakano Y, Ishida H (1992) Vertical climbing in Ateles geoffroyi and Macaca fuscata and its comparative neurological background. In: Matano S, Tuttle RD, Ishida H, Goodman M (eds) Topics in Primatology, Vol. 3: Evolutionary Biology, Reproductive Endocrinology, and Virology. University of Tokyo Press, Tokyo, pp 156–165

  40. Hof AL (1996) Scaling gait data to body size. Gait Posture 4:222–223

    Article  Google Scholar 

  41. Hoyt DF, Wickler SJ, Cogger EA (2000) Time of contact and step length: the effect of limb length, running speed, load carrying and incline. J Exp Biol 203:221–227

    CAS  PubMed  Google Scholar 

  42. Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387

  43. Ishiwaka R, Mori T (1999) Early development of climbing skills in harvest mice. Anim Behav 58:203–209

    CAS  Article  PubMed  Google Scholar 

  44. Isler K (2004) Footfall patterns, stride length and speed of vertical climbing in spider monkeys (Ateles fusciceps robustus) and woolly monkeys (Lagothrix lagotricha). Folia Primatol 75:133–49

    Article  PubMed  Google Scholar 

  45. Isler K (2005) 3D-kinematics of vertical climbing in hominoids. Am J Phys Anthropol 126:66–81

    Article  PubMed  Google Scholar 

  46. Isler K, Thorpe SKS (2003) Gait parameters in vertical climbing of captive, rehabilitant and wild Sumatran orang-utans (Pongo pygmaeus abelii). J Exp Biol 206:4081–4096

    Article  PubMed  Google Scholar 

  47. Jędrzejewska B, Jędrzejewski W (1990) Antipredatory behaviour of bank voles and prey choice of weasels - enclosure experiments. Ann Zool Fennici 27:321–328

    Google Scholar 

  48. Jędrzejewski W, Rychlik L, Jędrzejewska B (1993) Responses of bank voles to odours of seven species of predators: experimental data and their relevance to natural predator-vole relationships. Oikos 68:251

    Article  Google Scholar 

  49. Jenkins FA Jr (1974) Tree shrew locomotion and the origins of primate arborealism. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 85–116

  50. Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822

    CAS  Article  PubMed  Google Scholar 

  51. Kalos MH, Whitlock PA (2009) Monte Carlo Methods. Wiley-Verlag, New York

  52. Karantanis N-E, Youlatos D, Rychlik L (2015) Diagonal gaits in the feathertail glider Acrobates pygmaeus (Acrobatidae, Diprotodontia): insights for the evolution of primate quadrupedalism. J Hum Evol 86:43–54

    Article  PubMed  Google Scholar 

  53. Kirk EC, Lemelin P, Hamrick MW, Boyer DM, Bloch JI (2008) Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms. J Hum Evol 55:278–299

    Article  PubMed  Google Scholar 

  54. Kram R, Taylor CR (1990) Energetics of running: a new perspective. Nature 346:265–267

    CAS  Article  PubMed  Google Scholar 

  55. Krattli H (2001) Struktur und Funktion des Extremitäteninteguments bei einheimischen Mäuseartigen (Muridae, Rodentia). PhD Dissertation, University of Zurich

  56. Kuroe M, Ohori S, Takatsuki S, Miyashita T (2007) Nest-site selection by the harvest mouse Micromys minutus in seasonally changing environments. Acta Theriol 52:355–360

    Article  Google Scholar 

  57. Lammers AR (2007) Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110:93–103

    Article  PubMed  Google Scholar 

  58. Lammers AR, Biknevicius AR (2004) The biodynamics of arboreal locomotion: the effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum (Monodelphis domestica). J Exp Biol 207:4325–4336

    Article  PubMed  Google Scholar 

  59. Lammers AR, Earls KD, Biknevicius AR (2006) Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209:4154–4166

  60. Lammers AR, Gauntner T (2008) Mechanics of torque generation during quadrupedal arboreal locomotion. J Biomech 41:2388–2395

    Article  PubMed  Google Scholar 

  61. Lammers AR, Zurcher U (2011) Stability during arboreal locomotion. In: Klika V (ed) Theoretical Biomechanics. Available from: http://www.intechopen.com/books/theoretical-biomechanics/stability-during-arboreal-locomotion

  62. Leach M (1990) Mice of the British Isles. Shire Publications Ltd., Aylesbury

  63. Lee DV, Stakebake EF, Walter RM, Carrier DR (2004) Effects of mass distribution on the mechanics of level trotting in dogs. J Exp Biol 207:1715–1728

    Article  PubMed  Google Scholar 

  64. Lemelin P, Cartmill M (2010) The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus). J Exp Zool part a Comp Exp Biol 313A:157–168

  65. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445

    CAS  Article  PubMed  Google Scholar 

  66. McElroy EJ, Hickey KL, Reilly SM (2008) The correlated evolution of biomechanics, gait and foraging mode in lizards. J Exp Biol 211:1029–1040

    Article  PubMed  Google Scholar 

  67. Meng J, Hu Y, Wang Y, Wang X, Li C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889–893

    CAS  Article  PubMed  Google Scholar 

  68. Meng Q-J, Ji Q, Zhang Y-G, Liu D, Grossnickle DM, Luo Z-X (2015) An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347:764–768

    CAS  Article  PubMed  Google Scholar 

  69. Nordvig K, Reddersen J, Jensen TS (2001) Small mammal exploitation of upper vegetation strata in non-forest, mixed farmland habitats. Mammal Biol -Z Säugetierk 66:129–134

  70. Nowak RM (1999) Walker’s Mammals of the World, 6th edn. The Johns Hopkins University Press, Baltimore

  71. Nyakatura JA, Fischer MS, Schmidt M (2008) Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am J Phys Anthropol 135:13–26

  72. Nyakatura JA, Heymann EW (2010) Effects of support size and orientation on symmetric gaits in free-ranging tamarins of Amazonian Peru: implications for the functional significance of primate gait sequence patterns. J Hum Evol 58:242–251

    Article  PubMed  Google Scholar 

  73. Özkan B, Yigit N, Colak E (2003) A study on Micromys minitus (Pallas, 1771) (Mammalia: Rodentia) in Turkish Thrace. Turkish J Zool 27:55–60

    Google Scholar 

  74. Pontzer H (2007) Effective limb length and the scaling of locomotor cost in terrestrial animals. J Exp Biol 210:1752–1761

    Article  PubMed  Google Scholar 

  75. Preuschoft H (2002) What does “arboreal locomotion” mean exactly and what are the relationships between “climbing,” environment and morphology? Z Morphol Anthropol 83:171–188

  76. Preuschoft H, Witte H, Fischer MS (1995) Locomotion in nocturnal prosimians. In: Alterman L, Doyle G, Izard M (eds) Creatures of the Dark. Plenum Press, New York, pp 453–472

  77. Pridmore PA (1994) Locomotion in Dromiciops australis (Marsupialia, Microbiotheriidae). Aust J Zool 42:679–699

    Article  Google Scholar 

  78. Rollinson JM, Martin RD (1981) Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. Symp Zool Soc Lond 48:377–427

    Google Scholar 

  79. Schmidt A, Fischer MS (2010) Arboreal locomotion in rats – the challenge of maintaining stability. J Exp Biol 213:3615–3624

    Article  PubMed  Google Scholar 

  80. Schmidt A, Fischer MS (2011) The kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent. J Exp Biol 214:2544–2559

    Article  Google Scholar 

  81. Schmidt M (2005) Hind limb proportions and kinematics: are small primates different from other small mammals? J Exp Biol 208:3367–3383

  82. Schmitt D (2003) Substrate size and primate forelimb mechanics : implications for understanding the evolution of primate locomotion. Internatl J Primatol 24:1023–1036

  83. Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118:231–238

    Article  PubMed  Google Scholar 

  84. Shapiro LJ, Young JW (2012) Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): effects of age and substrate size. J Exp Biol 215:4049–4049

    Article  Google Scholar 

  85. Shattuck MR, Williams SA (2010) Arboreality has allowed for the evolution of increased longevity in mammals. Proc Natl Acad Sci USA 107:4635–4639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Soligo C, Martin RD (2006) Adaptive origins of primates revisited. J Hum Evol 50:414–430

    Article  PubMed  Google Scholar 

  87. Soligo C, Smaers JB (2016) Contextualising primate origins - an ecomorphological framework. J Anat 228:608–629

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stevens NJ (2006) Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates. J Exp Zool part a comp Exp Biol 305A:953–963

    Google Scholar 

  89. Stevens NJ (2008) The effect of branch diameter on primate gait sequence pattern. Am J Primatol 70:356–362

    Article  PubMed  Google Scholar 

  90. Surmacki A, Gołdyn B, Tryjanowski P (2005) Location and habitat characteristics of the breeding nests of the harvest mouse (Micromys minutus) in the reed-beds of an intensively used farmland. Mammalia 69:5–9

    Article  Google Scholar 

  91. Urbani B, Youlatos D (2013) Positional behavior and substrate use of Micromys minutus (Rodentia: Muridae): insights for understanding primate origins. J Hum Evol 64:130–136

    Article  PubMed  Google Scholar 

  92. Vázquez-Molinero R, Martin T, Fischer MS, Frey R (2001) Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications for its locomotion. Zoosyst Evol 77:207–216

    Article  Google Scholar 

  93. Vilensky JA, Moore AM, Libii JN (1994) Squirrel monkey locomotion on an inclined treadmill: implications for the evolution of gaits. J Hum Evol 26:375–386

    Article  Google Scholar 

  94. Wallace IJ, Demes B (2008) Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates. J Hum Evol 54:783–794

    Article  PubMed  Google Scholar 

  95. White TD (1990) Gait selection in the brush-tail possum (Trichosurus vulpecula), the northern quoll (Dasyurus hallucatus), and the Virginia opossum (Didelphis virginiana). J Mammal 71:79–84

    Article  Google Scholar 

  96. Witte H, Preuschoft H, Fischer MS (2002) The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. Z Morphol Anthropol 83:221–233

    PubMed  Google Scholar 

  97. Ylönen H (1990) Spatial avoidance between the bank vole Clethrionomys minutus and the harvest mouse Micromys minutus: an experimental study. Ann Zool Fennici 27:313–320

    Google Scholar 

  98. Young JW (2009) Substrate determines asymmetrical gait dynamics in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis). Am J Phys Anthropol 138:403–420

    Article  PubMed  Google Scholar 

  99. Zheng X, Bi S, Wang X, Meng J (2013) A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500:199–202

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors wish to express their gratitude to all the people who helped throughout this project: the staff of the Nowe Zoo of Poznan for granting permission and providing the specimens, as well as their invaluable help and patience throughout the experimental procedures, Peter Klimant for his extensive assistance in the experiments, and Doug Brown for essential modifications to the Tracker software that made data analysis possible. Two anonymous reviewers and the editor-in-chief, Dr. John Wible, provided feedback that greatly improved an earlier version of this manuscript. Financial support was provided through funds by the Erasmus studies scholarships to NEK, the School of Biology of the Aristotle University of Thessaloniki, and the Department of Systematic Zoology, Adam Mickiewicz University, Poznan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolaos-Evangelos Karantanis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The present research strictly adhered to the guidelines for the treatment of animals in behavioral research and teaching (ASAB/ABS 2012) and complied with relevant regulations and legislations of the Nowe Zoo and the Adam Mickiewicz University in Poznan and the relevant legislation of the Aristotle University of Thessaloniki. Handling, housing of animals and behavioral tests were carried out with permission by the Local Ethical Commission for the Animal Experiments in Poznan.

Informed Consent

No human subjects participated in the experiments of this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karantanis, NE., Rychlik, L., Herrel, A. et al. Vertical Locomotion in Micromys minutus (Rodentia: Muridae): Insights into the Evolution of Eutherian Climbing. J Mammal Evol 25, 277–289 (2018). https://doi.org/10.1007/s10914-016-9374-5

Download citation

Keywords

  • Gaits
  • Eutherian evolution
  • Arboreality
  • Gait
  • Small body size
  • Rodent